

4845 Knightsbridge Blvd Suite 200 Columbus, OH 43214 Phone: (614) 451-4375 Fax: (614) 451-5284

Genetic Testing Summary

Enclosed are the genetic testing results for

CB 497

No amount of genetic testing can guarantee that a child will not be affected with a genetic condition. Genetic testing can inform you of the likelihood of passing on the genetic conditions that are tested for, but it cannot eliminate the risk of passing on any genetic condition.

The genetic conditions Cryobio tests for are inherited in an autosomal recessive manner. This means that the child would have to inherit a genetic mutation from both the sperm source and the egg source to be affected with the condition. When both the sperm source and the egg source have undergone genetic carrier screening and the test results are negative, the risk of a child being affected with the conditions tested for is significantly reduced, but it cannot be completely eliminated.

All recipients should discuss both or their own risk for passing on genetic conditions and whether would benefit from genetic counseling and testing with their health care provider. Before using a donor that is a carrier for a specific recessive genetic condition or conditions, we strongly recommend that the recipient (or egg source, if different) consider genetic counseling and testing to determine if they are a carrier for the same genetic condition or conditions as the donor.

Screening and testing have changed dramatically over the years, and so the screening and testing done on each donor may very depending on the testing that was in place when he was actively in Cryobio's donor program. Earlier donors may not have had as extensive testing as later donors. Screening and testing may change again in the future, so please review the results each time before ordering as both the testing done and the results may change.

Patient Information Name: Cb 497

Specimen Information

Specimen Type: Blood
Date Collected:
Date Received:
Final Report:

Referring Provider

David Prescott, M.D.
Cryobiology, Inc.
4830-D Knightsbridge Blvd
Columbus, OH, 43214
Fax: 614-451-5284

Expanded Carrier Screen (283)

Number of genes tested: 283

SUMMARY OF RESULTS AND RECOMMENDATIONS

🕀 Positive	\bigcirc Negative
Carrier of Congenital Disorder of Glycosylation, Type Ia (AR) Associated gene(s): <i>PMM2</i> Variant(s) Detected: c 422G>A, p.R141H, Pathogenic, Heterozygous (one copy)	Negative for all other genes tested To view a full list of genes and diseases tested please see Table 1 in this report

AR=Autosomal recessive; XL=X-linked

Recommendations

- Testing the partner for the above positive disorder(s) and genetic counseling are recommended.
- Please note that for female carriers of X-linked diseases, follow-up testing of a male partner is not indicated.
- CGG repeat analysis of *FMR1* for fragile X syndrome is not performed on males as repeat expansion of premutation alleles is not expected in the male germline.
- Individuals of Asian, African, Hispanic and Mediterranean ancestry should also be screened for hemoglobinopathies by CBC and hemoglobin electrophoresis.
- Consideration of residual risk by ethnicity after a negative carrier screen is recommended for the other diseases on the panel, especially in the case of a positive family history for a specific disorder.

Interpretation of positive results

Congenital Disorder of Glycosylation, Type Ia (AR)

Results and Interpretation

A heterozygous (one copy) pathogenic missense variant, c.422G>A, p.R141H, was detected in the *PMM2* gene (NM_0003032). When this variant is present in trans with a pathogenic variant, it is considered to be causative for congenital disorder of glycosylation, type Ia. Therefore, this individual is expected to be at least a carrier for congenital disorder of glycosylation, type Ia. Heterozygous carriers are not expected to exhibit symptoms of this disease.

What is Congenital Disorder of Glycosylation, Type Ia?

Congenital disorder of glycosylation, type Ia is an autosomal recessive syndrome caused by pathogenic variants in the gene *PMM2*. While patients have been reported from multiple ethnicities, this disease is more common in the Ashkenazi Jewish and Caucasian populations. This disease may present in infancy, childhood or adolescence, and the clinical manifestations are highly variable. In infants, the disease may present as failure to thrive as a result of feeding problems; later, the disease may manifest as encephalopathy, hypotonia, delayed language and motor development, intellectual disability, stroke-like episodes, and retinitis pigmentosa. Severely affected individuals may die in early childhood, but more mildly affected individuals may survive into adulthood with variable intellectual disability, spinal abnormalities, endocrine dysfunction and coagulopathy. Several specific variants have been associated with milder or more severe disease, and therefore the disease severity may be predicted in some patients.

Test description

This patient was tested for a panel of diseases using a combination of sequencing, targeted genotyping and copy number analysis. Please note that negative results reduce but do not eliminate the possibility that this individual is a carrier for one or more of the disorders tested. Please see Table 1 for a list of genes and diseases tested, and **go.sema4.com/residualrisk** for specific detection rates and residual risk by ethnicity. With individuals of mixed ethnicity, it is recommended to use the highest residual risk estimate. Only variants determined to be pathogenic or likely pathogenic are reported in this carrier screening test.

Wayn

Wanqiong Qiao Ph.D. Assistant Lab Director Laboratory Medical Consultant: George A. Diaz, M.D., Ph.D.

Genes and diseases tested

For specific detection rates and residual risk by ethnicity, please visit go.sema4.com/residualrisk

Table 1: List of genes and diseases tested with detailed results

	Disease	Gene	Inheritance Pattern	Status	Detailed Summary
Ð	Positive				
	Congenital Disorder of Glycosylation, Type la	PMM2	AR	Carrier	c.422G>A, p.R141H, Pathogenic, Heterozygous (one copy)
Θ	Negative				
	3-Beta-Hydroxysteroid Dehydrogenase Type II Deficiency	HSD3B2	AR	Reduced Risk	
	3-Methylcrotonyl-CoA Carboxylase Deficiency (MCCC2- Related)	MCCC1	AR	Reduced Risk	
	3-Methylcrotonyl-CoA Carboxylase Deficiency (MCCC2- Related)	MCCC2	AR	Reduced Risk	
	3-Methylglutaconic Aciduria, Type III	OPA3	AR	Reduced Risk	
	3-Phosphoglycerate Dehydrogenase Deficiency	PHGDH	AR	Reduced Risk	
	6-Pyruvoyl-Tetrahydropterin Synthase Deficiency	PTS	AR	Reduced Risk	
	Abetalipoproteinemia	MTTP	AR	Reduced Risk	
	Achromatopsia (CNGB3-related)	CNGB3	AR	Reduced Risk	
	Acrodermatitis Enteropathica	SLC39A4	AR	Reduced Risk	
	Acute Infantile Liver Failure	TRMU	AR	Reduced Risk	
	Acyl-CoA Oxidase I Deficiency	ACOX1	AR	Reduced Risk	
	Adenosine Deaminase Deficiency	ADA	AR	Reduced Risk	
	Adrenoleukodystrophy, X-Linked	ABCD1	XL	Reduced Risk	
	Aicardi-Goutieres Syndrome (SAMHD1-Related)	SAMHD1	AR	Reduced Risk	
	Alpha-Mannosidosis	MAN2B1	AR	Reduced Risk	
	Alpha-Thalassemia	HBA1/HBA2	AR	Reduced Risk	HBA1 Copy Number: 2 HBA2 Copy Number: 2 No pathogenic copy number variants detected HBA1/HBA2 Sequencing: Negative
	Alpha-Thalassemia Mental Retardation Syndrome	ATRX	XL	Reduced Risk	
	Alport Syndrome (COL4A3-Related)	COL4A3	AR	Reduced Risk	
	Alport Syndrome (COL4A4-Related)	COL4A4	AR	Reduced Risk	
	Alport Syndrome (COL4A5-Related)	COL4A5	XL	Reduced Risk	
	Alstrom Syndrome	ALMS1	AR	Reduced Risk	
	Andermann Syndrome	SLC12A6	AR	Reduced Risk	

Argininosuccinic Aciduria	ASL	AR	Reduced Risk
Aromatase Deficiency	CYP19A1	AR	Reduced Risk
Arthrogryposis, Mental Retardation, and Seizures	SLC35A3	AR	Reduced Risk
Asparagine Synthetase Deficiency	ASNS	AR	Reduced Risk
Aspartylglycosaminuria	AGA	AR	Reduced Risk
Ataxia With Isolated Vitamin E Deficiency	ΤΤΡΑ	AR	Reduced Risk
Ataxia-Telangiectasia	ATM	AR	Reduced Risk
Autosomal Recessive Spastic Ataxia of Charlevoix- Saguenay	SACS	AR	Reduced Risk
Bardet-Biedl Syndrome (BBS10-Related)	BBS10	AR	Reduced Risk
Bardet-Biedl.Syndrome (BBS12-Related)	BBS12	AR	Reduced Risk
Bardet-Biedl Syndrome (BBS1-Related)	BBS1	AR	Reduced Risk
Bardet-Biedl Syndrome (BBS2-Related)	BBS2	AR	Reduced Risk
Bare Lymphocyte Syndrome, Type II	CIITA	AR	Reduced Risk
Bartter Syndrome, Type 4A	BSND	AR	Reduced Risk
Bernard-Soulier Syndrome, Type A1	GP1BA	AR	Reduced Risk
Bernard-Soulier Syndrome, Type C	GP9	AR	Reduced Risk
Beta-Globin-Related Hemoglobinopathies	HBB	AR	Reduced Risk
Beta-Ketothiolase Deficiency	ACAT1	AR	Reduced Risk
Bilateral Frontoparietal Polymicrogyria	GPR56	AR	Reduced Risk
Biotinidase Deficiency	BTD	AR	Reduced Risk
Bloom Syndrome	BLM	AR	Reduced Risk
Canavan Disease	ASPA	AR	Reduced Risk
Carbamoylphosphate Synthetase I Deficiency	CPS1	AR	Reduced Risk
Camitine Palmitoyttransferase IA Deficiency	CPT1A	AR	Reduced Risk
Camitine Palmitoyttransferase II Deficiency	CPT2	AR	Reduced Risk
Carpenter Syndrome	RAB23	AR	Reduced Risk
Cartilage-Hair Hypoplasia	RMRP	AR	Reduced Risk
Cerebral Creatine Deficiency Syndrome 1	SLC6A8	XL	Reduced Risk
Cerebral Creatine Deficiency Syndrome 2	GAMT	AR	Reduced Risk
Cerebrotendinous Xanthomatosis	CYP27A1	AR	Reduced Risk
Charcot-Marie-Tooth Disease, Type 4D	NDRG1	AR	Reduced Risk
Charcot-Marie-Tooth Disease, Type 5 / Arts Syndrome	PRPS1	XL	Reduced Risk
Charcot-Marie-Tooth Disease, X-Linked	GJB1	XL	Reduced Risk
Choreoacanthocytosis	VPS13A	AR	Reduced Risk
Choroideremia	СНМ	XL	Reduced Risk

Chronic Granulomatous Disease (CYBA-Related)	CYBA	AR	Reduced Risk	
Chronic Granulomatous Disease (CYBB-Related)	CYBB	XL	Reduced Risk	
Citrin Deficiency	SLC25A13	AR	Reduced Risk	
Citrullinemia, Type 1	ASS1	AR	Reduced Risk	
Cohen Syndrome	VPS13B	AR	Reduced Risk	
Combined Malonic and Methylmalonic Aciduria	ACSF3	AR	Reduced Risk	
Combined Oxidative Phosphorylation Deficiency 1	GFM1	AR	Reduced Risk	
Combined Oxidative Phosphorylation Deficiency 3	TSFM	AR	Reduced Risk	
Combined Pituitary Hormone Deficiency 2	PROP1	AR	Reduced Risk	
Combined Pituitary Hormone Deficiency 3	LHX3	AR	Reduced Risk	
Combined SAP Deficiency	PSAP	AR	Reduced Risk	
Congenital Adrenal Hyperplasia due to 17-Alpha- Hydroxylase Deficiency	CYP17A1	AR	Reduced Risk	
Congenital Adrenal Hyperplasia due to 21-Hydroxylase Deficiency	CYP21A2	AR	Reduced Risk	<i>CYP21A2</i> copy number: 2 <i>CYP21A2</i> sequencing: Negative
Congenital Amegakaryocytic Thrombocytopenia	MPL	AR	Reduced Risk	
Congenital Disorder of Glycosylation, Type Ib	MPI	AR	Reduced Risk	
Congenital Disorder of Glycosylation, Type Ic	ALG6	AR	Reduced Risk	
Congenital Insensitivity to Pain with Anhidrosis	NTRK1	AR	Reduced Risk	
Congenital Myasthenic Syndrome (CHRNE-Related)	CHRNE	AR	Reduced Risk	
Congenital Myasthenic Syndrome (RAPSN-Related)	RAPSN	AR	Reduced Risk	
Congenital Neutropenia (HAX1-Related)	HAX1	AR	Reduced Risk	
Congenital Neutropenia (VPS45-Related)	VPS45	AR	Reduced Risk	
Corneal Dystrophy and Perceptive Deafness	SLC4A11	AR	Reduced Risk	
Corticosterone Methyloxidase Deficiency	CYP11B2	AR	Reduced Risk	
Cyslic Fibrosis	CFTR	AR	Reduced Risk	
Cystinosis	CTNS	AR	Reduced Risk	
D-Bifunctional Protein Deficiency	HSD17B4	AR	Reduced Risk	
Deafness, Autosomal Recessive 77	LOXHD1	AR	Reduced Risk	
Duchenne Muscular Dystrophy / Becker Muscular Dystrophy	DMD	XL	Reduced Risk	
Dyskeratosis Congenita (RTEL1-Related)	RTEL1	AR	Reduced Risk	
Dystrophic Epidermolysis Bullosa	COL7A1	AR	Reduced Risk	
Ehlers-Danlos Syndrome, Type VIIC	ADAMTS2	AR	Reduced Risk	
Ellis-van Creveld Syndrome (EVC-Related)	EVC	AR	Reduced Risk	
Emery-Dreifuss Myopathy 1	EMD	XL	Reduced Risk	
Enhanced S-Cone Syndrome	NR2E3	AR	Reduced Risk	

CLIA # 33D2097541 T: 800-298-6470 F: 212-241-0139 www.sema4.com

Ethylmalonic Encephalopathy	ETHE1	AR	Reduced Risk	
Fabry Disease	GLA	XL	Reduced Risk	
Factor IX Deficiency	F9	XL	Reduced Risk	
Factor XI Deficiency	F11	AR	Reduced Risk	
Familial Autosomal Recessive Hypercholesterolemia	LDLRAP1	AR	Reduced Risk	
Familial Dysautonomia	IKBKAP	AR	Reduced Risk	
Familial Hypercholesterolemia	LDLR	AR	Reduced Risk	
Familial Hyperinsulinism (ABCC8-Related)	ABCC8	AR	Reduced Risk	
Familial Hyperinsulinism (KCN/11-Related)	KCNJ11	AR	Reduced Risk	
Familial Mediterranean Fever	MEFV	AR	Reduced Risk	
Fanconi Anemia, Group A	FANCA	AR	Reduced Risk	
Fanconi Anemia, Group C	FANCC	AR	Reduced Risk	
Fanconi Anemia, Group G	FANCG	AR	Reduced Risk	
Fragile X Syndrome	FMR1	XL	Reduced Risk	FMR1 CGG repeat sizes: Not Performed FMR1 Sequencing: Negative Fragile X CGG triplet repeat expansion testing wa not performed at this time, as the patient has eithe been previously tested or is a male.
Furnarase Deficiency	FH	AR	Reduced Risk	
GRACILE Syndrome and Other BCS1L-Related Disorders	BCS1L	AR	Reduced Risk	
Galactokinase Deficiency	GALK1	AR	Reduced Risk	
Galactosemia	GALT	AR	Reduced Risk	
Gaucher Disease	GBA	AR	Reduced Risk	
Gitelman Syndrome	SLC12A3	AR	Reduced Risk	
Giutaric Acidemia, Type I	GCDH	AR	Reduced Risk	
Gutaric Acidemia, Type IIa	ETFA	AR	Reduced Risk	
Glutaric Acidemia, Type IIc	ETFDH	AR	Reduced Risk	
Glycine Encephalopathy (AMT-Related)	AMT	AR	Reduced Risk	
Glycine Encephalopathy (GLDC-Related)	GLDC	AR	Reduced Risk	
Glycogen Storage Disease, Type II	GAA	AR	Reduced Risk	
Glycogen Storage Disease, Type III	AGL	AR	Reduced Risk	
Glycogen Storage Disease, Type IV / Adult Polyglucosan Body Disease	GBE1	AR	Reduced Risk	
Glycogen Storage Disease, Type la	G6PC	AR	Reduced Risk	
Glycogen Storage Disease, Type Ib	SLC37A4	AR	Reduced Risk	
Glycogen Storage Disease, Type V	PYGM	AR	Reduced Risk	
Glycogen Storage Disease, Type VII	PFKM	AR	Reduced Risk	

Hemochromatosis, Type 2A	HFE2	AR	Reduced Risk
Hemochromatosis. Type 3	TFR2	AR	Reduced Risk
Hereditary Fructose Intolerance	ALDOB	AR	Reduced Risk
Hereditary Spastic Paraparesis 49	TECPR2	AR	Reduced Risk
Hermansky-Pudlak Syndrome, Type 1	HPS1	AR	Reduced Risk
Hermansky-Pudlak Syndrome, Type 3	HPS3	AR	Reduced Risk
Holocarboxylase Synthetase Deficiency	HLCS	AR	Reduced Risk
Homocystinuria (CBS-Related)	CBS	AR	Reduced Risk
Homocystinuria due to MTHFR Deficiency	MTHFR	AR	Reduced Risk
Homocystinuria, cbIEType	MTRR	AR	Reduced Risk
Hydrolethalus Syndrome	HYLS1	AR	Reduced Risk
Hyperomithinemia-Hyperammonemia-Homocitrullinuria Syndrome	SLC25A15	AR	Reduced Risk
Hypohidrotic Ectodermal Dysplasia 1	EDA	XL	Reduced Risk
Hypophosphatasia	ALPL	AR	Reduced Risk
Inclusion Body Myopathy 2	GNE	AR	Reduced Risk
Infantile Cerebral and Cerebellar Atrophy	MED17	AR	Reduced Risk
Isovaleric Acidemia	IVD	AR	Reduced Risk
Joubert Syndrome 2	TMEM216	AR	Reduced Risk
Joubert Syndrome 7 / Meckel Syndrome 5 / COACH Syndrome	RPGRIP1L	AR	Reduced Risk
Junctional Epidermolysis Bullosa (LAMA3-Related)	LAMA3	AR	Reduced Risk
Junctional Epidermolysis Bullosa (LAMB3-Related)	LAMB3	AR	Reduced Risk
Junctional Epidermolysis Bullosa (LAMC2-Related)	LAMC2	AR	Reduced Risk
Krabbe Disease	GALC	AR	Reduced Risk
Lamellar Ichthyosis, Type 1	TGM1	AR	Reduced Risk
Leber Congenital Amaurosis 10 and Other CEP290- Related Ciliopathies	CEP290	AR	Reduced Risk
Leber Congenital Amaurosis 13	RDH12	AR	Reduced Risk
Leber Congenital Amaurosis 2 / Retinitis Pigmentosa 20	RPE65	AR	Reduced Risk
Leber Congenital Amaurosis 5	LCA5	AR	Reduced Risk
Leber Congenital Amaurosis 8 / Retinitis Pigmentosa 12 / Pigmented Paravenous Chorioretinal Atrophy	CRB1	AR	Reduced Risk
Leigh Syndrome, French-Canadian Type	LRPPRC	AR	Reduced Risk
Lethal Congenital Contracture Syndrome 1 / Lethal Arthrogryposis with Anterior Hom Cell Disease	GLE1	AR	Reduced Risk
Leukoencephalopathy with Vanishing White Matter	EIF2B5	AR	Reduced Risk
Limb-Girdle Muscular Dystrophy, Type 2A	CAPN3	AR	Reduced Risk

Limb-Girdle Muscular Dystrophy, Type 2B	DYSF	AR	Reduced Risk
Limb-Girdle Muscular Dystrophy, Type 2C	SGCG	AR	Reduced Risk
Limb-Girdle Muscular Dystrophy, Type 2D	SGCA	AR	Reduced Risk
Limb-Girdle Muscular Dystrophy, Type 2E	SGCB	AR	Reduced Risk
Limb-Girdle Muscular Dystrophy, Type 21	FKRP	AR	Reduced Risk
Lipoamide Dehydrogenase Deficiency	DLD	AR	Reduced Risk
Lipoid Adrenal Hyperplasia	STAR	AR	Reduced Risk
Lipoprotein Lipase Deficiency	LPL	AR	Reduced Risk
Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency	HADHA	AR	Reduced Risk
Lysinuric Protein Intolerance	SLC7A7	AR	Reduced Risk
Maple Syrup Urine Disease, Type 1a	BCKDHA	AR	Reduced Risk
Maple Syrup Urine Disease, Type 1b	BCKDHB	AR	Reduced Risk
Meckel 1 / Bardet-Biedl Syndrome 13	MKS1	AR	Reduced Risk
Medium Chain Acyl-CoA Dehydrogenase Deficiency	ACADM	AR	Reduced Risk
Megalencephalic Leukoencephalopathy with Subcortical Cysts	MLC1	AR	Reduced Risk
Menkes Disease	ATP7A	XL	Reduced Risk
Metachromatic Leukodystrophy	ARSA	AR	Reduced Risk
Methylmalonic Acidemia (MMAA-Related)	MMAA	AR	Reduced Risk
Methylmalonic Acidemia (MMAB-Related)	MMAB	AR	Reduced Risk
Methylmalonic Acidemia (MUT-Related)	MUT	AR	Reduced Risk
Methylmalonic Aciduria and Homocystinuria, Cobalamin C Type	MMACHC	AR	Reduced Risk
Methylmalonic Aciduria and Homocystinuria, Cobalamin D Type	MMADHC	AR	Reduced Risk
Microphthalmia / Anophthalmia	VSX2	AR	Reduced Risk
Mitochondrial Complex Deficiency (ACADg-Related)	ACAD9	AR	Reduced Risk
Mitochondrial Complex Deficiency (NDUFAF5-Related)	NDUFAF5	AR	Reduced Risk
Mitochondrial Complex Deficiency (NDUFS6-Related)	NDUFS6	AR	Reduced Risk
Mitochondrial DNA Depletion Syndrome 6 / Navajo Neurohepatopathy	MPV17	AR	Reduced Risk
Mitochondrial Myopathy and Sideroblastic Anemia 1	PUS1	AR	Reduced Risk
Mucolipidosis II / IIIA	GNPTAB	AR	Reduced Risk
Mucolipidosis III Gamma	GNPTG	AR	Reduced Risk
Mucolipidosis IV	MCOLN1	AR	Reduced Risk
Mucopolysaccharidosis Type I	IDUA	AR	Reduced Risk

Mucopolysaccharidosis Type IIIA	SGSH	AR	Reduced Risk
Mucopolysaccharidosis Type IIIB	NAGLU	AR	Reduced Risk
Mucopolysaccharidosis Type IIIC	HGSNAT	AR	Reduced Risk
Mucopolysaccharidosis Type IIID	GNS	AR	Reduced Risk
Mucopolysaccharidosis Type IVb / GM1 Gangliosidosis	GLB1	AR	Reduced Risk
Mucopolysaccharidosis type IX	HYAL1	AR	Reduced Risk
Mucopolysaccharidosis type VI	ARSB	AR	Reduced Risk
Multiple Sulfatase Deficiency	SUMF1	AR	Reduced Risk
Muscle-Eye-Brain Disease and Other <i>POMGNT1</i> -Related Congenital Muscular Dystrophy-Dystroglycanopathies	POMGNT1	AR	Reduced Risk
Myoneurogastrointestinal Encephalopathy	TYMP	AR	Reduced Risk
Myotubular Myopathy 1	MTM1	XL	Reduced Risk
N-Acetylglutamate Synthase Deficiency	NAGS	AR	Reduced Risk
Nemaline Myopathy 2	NEB	AR	Reduced Risk
Nephrogenic Diabetes Insipidus, Type II	AQP2	AR	Reduced Risk
Nephrotic Syndrome (<i>NPHS1</i> -Related) / Congenital Finnish Nephrosis	NPHS1	AR	Reduced Risk
Nephrotic Syndrome (<i>NPHS2</i> -Related) / Steroid- Resistant Nephrotic Syndrome	NPHS2	AR	Reduced Risk
Neuronal Ceroid-Lipofuscinosis (CLN3-Related)	CLN3	AR	Reduced Risk
Neuronal Ceroid-Lipofuscinosis (CLN5-Related)	CLN5	AR	Reduced Risk
Neuronal Ceroid-Lipofuscinosis (CLN6-Related)	CLN6	AR	Reduced Risk
Neuronal Ceroid-Lipofuscinosis (CLN8-Related)	CLN8	AR	Reduced Risk
Neuronal Ceroid-Lipofuscinosis (MFSD8-Related)	MFSD8	AR	Reduced Risk
Neuronal Ceroid-Lipofuscinosis (PPT1-Related)	PPT1	AR	Reduced Risk
Neuronal Ceroid-Lipofuscinosis (TPP1-Related)	TPP1	AR	Reduced Risk
Niemann-Pick Disease (SMPD1-Related)	SMPD1	AR	Reduced Risk
Niemann-Pick Disease, Type C (<i>NPC1</i> -Related)	NPC1	AR	Reduced Risk
Niemann-Pick Disease, Type C (<i>NPC2</i> -Related)	NPC2	AR	Reduced Risk
Nijmegen Breakage Syndrome	NBN	AR	Reduced Risk
Non-Syndromic Hearing Loss (GJB2-Related)	GJB2	AR	Reduced Risk
Odonto-Onycho-Dermal Dysplasia / Schopf-Schulz- Passarge Syndrome	WNT10A	AR	Reduced Risk
Omenn Syndrome (RAG2-Related)	RAG2	AR	Reduced Risk
Omenn Syndrome / Severe Combined Immunodeficiency, Athabaskan-Type	DCLRE1C	AR	Reduced Risk
Omithine Aminotransferase Deficiency	OAT	AR	Reduced Risk
Omithine Transcarbomylase Deficiency	OTC	XL	Reduced Risk

Osteopetrosis 1	TCIRG1	AR	Reduced Risk
Pendred Syndrome	SLC26A4	AR	Reduced Risk
Phenylalanine Hydroxylase Deficiency	PAH	AR	Reduced Risk
Polycystic Kidney Disease, Autosomal Recessive	PKHD1	AR	Reduced Risk
Polyglandular Autoimmune Syndrome, Type 1	AIRE	AR	Reduced Risk
Pontocerebellar Hypoplasia, Type 1A	VRK1	AR	Reduced Risk
Pontocerebellar Hypoplasia, Type 6	RARS2	AR	Reduced Risk
Primary Carnitine Deficiency	SLC22A5	AR	Reduced Risk
Primary Ciliary Dyskinesia (DNAH5-Related)	DNAH5	AR	Reduced Risk
Primary Ciliary Dyskinesia (DNA/1-Related)	DNAI1	AR	Reduced Risk
Primary Ciliary Dyskinesia (DNAI2-Related)	DNAI2	AR	Reduced Risk
Primary Hyperoxaluria, Type 1	AGXT	AR	Reduced Risk
Primary Hyperoxaluria, Type 2	GRHPR	AR	Reduced Risk
Primary Hyperoxaluria, Type 3	HOGA1	AR	Reduced Risk
Progressive Cerebello-Cerebral Atrophy	SEPSECS	AR	Reduced Risk
Progressive Familial Intrahepatic Cholestasis, Type 2	ABCB11	AR	Reduced Risk
Propionic Acidemia (PCCA-Related)	PCCA	AR	Reduced Risk
Propionic Acidemia (PCCB-Related)	PCCB	AR	Reduced Risk
Pycnodysostosis	CTSK	AR	Reduced Risk
Pyruvate Dehydrogenase E1-Alpha Deficiency	PDHA1	XL	Reduced Risk
Pyruvate Dehydrogenase E1-Beta Deficiency	PDHB	AR	Reduced Risk
Renal Tubular Acidosis and Deafness	ATP6V1B1	AR	Reduced Risk
Retinitis Pigmentosa 25	EYS	AR	Reduced Risk
Retinitis Pigmentosa 26	CERKL	AR	Reduced Risk
Retinitis Pigmentosa 28	FAM161A	AR	Reduced Risk
Retinitis Pigmentosa 59	DHDDS	AR	Reduced Risk
Rhizomelic Chondrodysplasia Punctata, Type 1	PEX7	AR	Reduced Risk
Rhizomelic Chondrodysplasia Punctata, Type 3	AGPS	AR	Reduced Risk
Roberts Syndrome	ESCO2	AR	Reduced Risk
Salla Disease	SLC17A5	AR	Reduced Risk
Sandhoff Disease	HEXB	AR	Reduced Risk
Schimke Immunoosseous Dysplasia	SMARCAL1	AR	Reduced Risk
Segawa Syndrome	TH	AR	Reduced Risk
Segawa Syndrome Sjogren-Larsson Syndrome	TH ALDH3A2	AR AR	Reduced Risk Reduced Risk

Spinal Muscular Atrophy	SMN1	AR	Reduced Risk	<i>SMN1</i> copy number: 2 <i>SMN2</i> copy number: 2 c.*3+80T>G: Negative
Spondylothoracic Dysostosis	MESP2	AR	Reduced Risk	
Steel Syndrome	COL27A1	AR	Reduced Risk	
Stuve-Wiedemann Syndrome	LIFR	AR	Reduced Risk	
Sulfate Transporter-Related Osteochondrodysplasia	SLC26A2	AR	Reduced Risk	
				Tay-Sachs disease enzyme: Non-carrier
				 White blood cells: Non-carrier Hex A% 60.1% (Non-carrier : 55.0 - 72.0%, Carrier: <50%) Total hexosaminidase activity: 1559
Tay-Sachs Disease	HEXA	AR	Reduced Risk	nmol/hr/mg
				 Plasma: Non-carrier Hex A% 66.0 (Non-carrier : 58.0 - 72.0%; Carrier: <54%) Total hexosaminidase activity: 730 nmol/hr/ml HEXA Sequencing: Negative
Tyrosinemia, Type I	FAH	AR	Reduced Risk	12 (20) ATC
Jsher Syndrome, Type IB	MY07A	AR	Reduced Risk	
Jsher Syndrome, Type IC	USH1C	AR	Reduced Risk	
Jsher Syndrome, Type ID	CDH23	AR	Reduced Risk	
Usher Syndrome, Type IF	PCDH15	AR	Reduced Risk	
Usher Syndrome, Type IIA	USH2A	AR	Reduced Risk	
Usher Syndrome, Type III	CLRN1	AR	Reduced Risk	
Very Long Chain Acyl-CoA Dehydrogenase Deficiency	ACADVL	AR	Reduced Risk	
Walker-Warburg Syndrome and Other FKTN-Related Dystrophies	FKTN	AR	Reduced Risk	
Wilson Disease	ATP7B	AR	Reduced Risk	
Wolman Disease / Cholesteryl Ester Storage Disease	LIPA	AR	Reduced Risk	
X-Linked Juvenile Retinoschisis	RS1	XL	Reduced Risk	
X-Linked Severe Combined Immunodeficiency	IL2RG	XL	Reduced Risk	
Zellweger Syndrome Spectrum (PEX10-Related)	PEX10	AR	Reduced Risk	
Zellweger Syndrome Spectrum (PEX1-Related)	PEX1	AR	Reduced Risk	
Zellweger Syndrome Spectrum (PEX2-Related)	PEX2	AR	Reduced Risk	
Zellweger Syndrome Spectrum (PEX6-Related)	PEX6	AR	Reduced Risk	

AR=Autosomal recessive; XL=X-linked

Test methods and comments

Genomic DNA isolated from this patient was analyzed by one or more of the following methodologies, as applicable:

Fragile X CGG Repeat Analysis (Analytical Detection Rate >99%)

PCR amplification using Asuragen, Inc. AmplideX® *FMR1* PCR reagents followed by capillary electrophoresis for allele sizing was performed. Samples positive for *FMR1* CGG repeats in the premutation and full mutation size range were further analyzed by Southern blot analysis to assess the size and methylation status of the *FMR1* CGG repeat.

Genotyping (Analytical Detection Rate >99%)

Multiplex PCR amplification and allele specific primer extension analyses using the MassARRAY® System were used to identify variants that are complex in nature or are present in low copy repeats. Rare sequence variants may interfere with assay performance.

Multiplex Ligation-Dependent Probe Amplification (MLPA) (Analytical Detection Rate >99%)

MLPA® probe sets and reagents from MRC-Holland were used for copy number analysis of specific targets versus known control samples. False positive or negative results may occur due to rare sequence variants in target regions detected by MLPA probes. Analytical sensitivity and specificity of the MLPA method are both 99%.

For alpha thalassemia, the copy numbers of the *HBA1* and *HBA2* genes were analyzed. Alpha-globin gene deletions, triplications, and the Constant Spring (CS) mutation are assessed. This test is expected to detect approximately 90% of all alpha-thalassemia mutations, varying by ethnicity. Carriers of alpha-thalassemia with three or more *HBA* copies on one chromosome, and one or no copies on the other chromosome, may not be detected. With the exception of triplications, other benign alpha-globin gene polymorphisms will not be reported. Analyses of *HBA1* and *HBA2* are performed in association with long-range PCR of the coding regions followed by short-read sequencing.

For Duchenne muscular dystrophy, the copy numbers of all *DMD* exons were analyzed. Potentially pathogenic single exon deletions and duplications are confirmed by a second method. Analysis of *DMD* is performed in association with sequencing of the coding regions. For congenital adrenal hyperplasia, the copy number of the *CYP21A2* gene was analyzed. This analysis can detect large deletions due to unequal meiotic crossing-over between *CYP21A2* and the pseudogene *CYP21A1P*. These 30-kb deletions make up approximately 20% of *CYP21A2* pathogenic alleles. This test may also identify certain point mutations in *CYP21A2* caused by gene conversion events between *CYP21A2* and *CYP21A2* and *CYP21A1P*. Some carriers may not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the *CYP21A2* gene on one chromosome and loss of *CYP21A2* (deletion) on the other chromosome. Analysis of *CYP21A2* is performed in association with long-range PCR of the coding regions followed by short-read sequencing.

For spinal muscular atrophy (SMA), the copy numbers of the *SMN1* and *SMN2* genes were analyzed. The individual dosage of exons 7 and 8 as well as the combined dosage of exons 1, 4, 6 and 8 of *SMN1* and *SMN2* were assessed. Copy number gains and losses can be detected with this assay. Depending on ethnicity, 6 - 29% of carriers will not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the *SMN1* gene on one chromosome and loss of *SMN1* (deletion) on the other chromosome (silent 2+0 carrier) or individuals that carry an intragenic mutation in *SMN1*. Please also note that 2% of individuals with SMA have an *SMN1* mutation that occurred *de novo*. Typically in these cases, only one parent is an SMA carrier.

The presence of the c.*3+80T>G (chr5:70.247.901T>G) variant allele in an individual with Ashkenazi Jewish or Asian ancestry is typically indicative of a duplication of *SMN1*. When present in an Ashkenazi Jewish or Asian individual with two copies of *SMN1*, c.*3+80T>G is likely indicative of a silent (2+0) carrier. In individuals with two copies of *SMN1* with African American, Hispanic or Caucasian ancestry, the presence or absence of c.*3+80T>G significantly increases or decreases, respectively, the likelihood of being a silent 2+0 silent carrier.

Pathogenic or likely pathogenic sequence variants in exon 7 may be detected during testing for the c.*3+80T>G variant allele; these will be reported if confirmed to be located in SMN1 using locus-specific Sanger primers

MLPA for Gaucher disease (*GBA*), cystic fibrosis (*CFTR*), and non-syndromic hearing loss (*GJB2/GJB6*) will only be performed if indicated for confirmation of detected CNVs. If *GBA* analysis was performed, the copy numbers of exons 1, 3, 4, and 6 - 10 of the *GBA* gene (of 11 exons total) were analyzed. If *CFTR* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was performed, the copy number of the two *GJB2* exons were analyzed, as well as the presence or absence of the two upstream deletions of the *GJB2* regulatory region, del(*GJB6* -D13S1830) and del(*GJB6* -D13S1854).

Next Generation Sequencing (NGS) (Analytical Detection Rate >95%)

NGS was performed on a panel of genes for the purpose of identifying pathogenic or likely pathogenic variants.

Agilent SureSelectTMQXT technology was used with a custom capture library to target the exonic regions and intron/exon splice junctions of the relevant genes, as well as a number of UTR, intronic or promoter regions that contain previously reported mutations. Samples were pooled and sequenced on the Illumina HiSeq 2500 platform in the Rapid Run mode or the Illumina NovaSeq platform in the Xp workflow, using 100 bp paired-end reads. The sequencing data was analyzed using a custom bioinformatics algorithm designed and validated in house. The coding exons and splice junctions of the known protein-coding RefSeq genes were assessed for the average depth of coverage (minimum of 20X) and data quality threshold values. Most exons not meeting a minimum of >20X read depth across the exon are further analyzed by Sanger sequencing. Please note that several genomic regions present difficulties in mapping or obtaining read depth >20X. The exons contained within these regions are noted within Table 1 (as 'Exceptions') and will not be reflexed to Sanger sequencing if the mapping

quality or coverage is poor. Any variants identified during testing in these regions are confirmed by a second method and reported if determined to be pathogenic or likely pathogenic. However, as there is a possibility of false negative results within these regions, detection rates and residual risks for these genes have been calculated with the presumption that variants in these exons will not be detected, unless included in the MassARRAY® genotyping platform.

This test will detect variants within the exons and the intron-exon boundaries of the target regions. Variants outside these regions may not be detected, including, but not limited to, UTRs, promoters, and deep intronic areas, or regions that fall into the Exceptions mentioned above. This technology may not detect all small insertion/deletions and is not diagnostic for repeat expansions and structural genomic variation. In addition, a mutation(s) in a gene not included on the panel could be present in this patient.

Variant interpretation and classification was performed based on the American College of Medical Genetics Standards and Guidelines for the Interpretation of Sequence Variants (Richards et al, 2015). All potentially pathogenic variants may be confirmed by either a specific genotyping assay or Sanger sequencing, if indicated. Any benign variants, likely benign variants or variants of uncertain significance identified during this analysis will not be reported.

Copy Number Variant Analysis (Analytical Detection Rate >95%)

Large duplications and deletions were called from the relative read depths on an exon-by-exon basis using a custom exome hidden Markov model (XHMM) algorithm. Deletions or duplications determined to be pathogenic or likely pathogenic were confirmed by either a custom arrayCGH platform, quantitative PCR, or MLPA (depending on CNV size and gene content). While this algorithm is designed to pick up deletions and duplications of 2 or more exons in length, potentially pathogenic single-exon CNVs will be confirmed and reported, if detected.

Exon Array (Confirmation method) (Accuracy >99%)

The customized oligonucleotide microarray (Oxford Gene Technology) is a highly-targeted exon-focused array capable of detecting medically relevant microdeletions and microduplications at a much higher resolution than traditional aCGH methods. Each array matrix has approximately 180,000 60-mer oligonucleotide probes that cover the entire genome. This platform is designed based on human genome NCBI Build 37 (hg19) and the CGH probes are enriched to target the exonic regions of the genes in this panel.

Quantitative PCR (Confirmation method) (Accuracy >99%)

The relative quantification PCR is utilized on a Roche Universal Library Probe (UPL) system, which relates the PCR signal of the target region in one group to another. To test for genomic imbalances, both sample DNA and reference DNA is amplified with primer/probe sets that specific to the target region and a control region with known genomic copy number. Relative genomic copy numbers are calculated based on the standard $\Delta\Delta$ Ct formula.

Long-Range PCR (Analytical Detection Rate >99%)

Long-range PCR was performed to generate locus-specific amplicons for *CYP21A2*, *HBA1* and *HBA2* and *GBA*. The PCR products were then prepared for short-read NGS sequencing and sequenced. Sequenced reads were mapped back to the original genomic locus and run through the bioinformatics pipeline. If indicated, copy number from MLPA was correlated with the sequencing output to analyze the results. For *CYP21A2*, a certain percentage of healthy individuals carry a duplication of the *CYP21A2* gene, which has no clinical consequences. In cases where two copies of a gene are located on the same chromosome in tandem, only the second copy will be amplified and assessed for potentially pathogenic variants, due to size limitations of the PCR reaction. However, because these alleles contain at least two copies of the *CYP21A2* gene in tandem, it is expected that this patient has at least one functional gene in the tandem allele and this patient is therefore less likely to be a carrier. When an individual carries both a duplication allele and a pathogenic variant, or multiple pathogenic variants, the current analysis may not be able to determine the phase (cis/trans configuration) of the *CYP21A2* alleles identified. Family studies may be required in certain scenarios where phasing is required to determine the carrier status.

Residual Risk Calculations

Carrier frequencies and detection rates for each ethnicity were calculated through the combination of internal curations of >28,000 variants and genomic frequency data from >138,000 individuals across seven ethnic groups in the gnomAD database. Additional variants in HGMD and novel deleterious variants were also incorporated into the calculation. Residual risk values are calculated using a Bayesian analysis combining the *a priori* risk of being a pathogenic mutation carrier (carrier frequency) and the detection rate. They are provided only as a guide for assessing approximate risk given a negative result, and values will vary based on the exact ethnic background of an individual. This report does not represent medical advice but should be interpreted by a genetic counselor, medical geneticist or physician skilled in genetic result interpretation and the relevant medical literature.

Sanger Sequencing (Confirmation method) (Accuracy >99%)

Sanger sequencing, as indicated, was performed using BigDye Terminator chemistry with the ABI 3730 DNA analyzer with target specific amplicons. It also may be used to supplement specific guaranteed target regions that fail NGS sequencing due to poor quality or low depth of coverage (<20 reads) or as a confirmatory method for NGS positive results. False negative results may occur if rare variants interfere with amplification or annealing.

Tay-Sachs Disease (TSD) Enzyme Analysis (Analytical Detection Rate > 98%)

Hexosaminidase activity and Hex A% activity were measured by a standard heat-inactivation, fluorometric method using artificial 4-MU-â-Nacetyl glucosaminide (4-MUG) substrate. This assay is highly sensitive and accurate in detecting Tay-Sachs carriers and individuals affected with TSD. Normal ranges of Hex A% activity are 55.0-72.0 for white blood cells and 58.0-72.0 for plasma. It is estimated that less than 0.5% of Tay-Sachs carriers have non-carrier levels of percent Hex A activity, and therefore may not be identified by this assay. In addition, this assay may detect individuals that are carriers of or are affected with Sandhoff disease. False positive results may occur if benign variants, such as pseudodeficiency alleles, interfere with the enzymatic assay. False negative results may occur if both *HEXA* and *HEXB* pathogenic or pseudodeficiency variants are present in the same individual.

Please note these tests were developed and their performance characteristics were determined by Mount Sinai Genomics, Inc. They have not been cleared or approved by the FDA. These analyses generally provide highly accurate information regarding the patient's carrier or affected status. Despite this high level of accuracy, it should be kept in mind that there are many potential sources of diagnostic error, including misidentification of samples, polymorphisms, or other rare genetic variants that interfere with analysis. Families should understand that rare diagnostic errors may occur for these reasons.

SELECTED REFERENCES

Carrier Screening

Grody W et al. ACMG position statement on prenatal/preconception expanded carrier screening. Genet Med. 2013 15:482-3.

Fragile X syndrome:

Chen L et al. An information-rich CGG repeat primed PCR that detects the full range of Fragile X expanded alleles and minimizes the need for Southern blot analysis. *J Mol Diag* 2010 12:589-600.

Spinal Muscular Atrophy:

Luo M et al. An Ashkenazi Jewish SMN1 haplotype specific to duplication alleles improves pan-ethnic carrier screening for spinal muscular atrophy. *Genet Med* . 2014 16:149-56.

Ashkenazi Jewish Disorders:

Scott SA et al. Experience with carrier screening and prenatal diagnosis for sixteen Ashkenazi Jewish Genetic Diseases. *Hum. Mutat.* 2010 31:1-11.

Duchenne Muscular Dystrophy:

Flanigan KM et al. Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. *Hum Mutat* . 2009 30:1657-66.

Variant Classification:

Richards S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med.* 2015 May;17(5):405-24 Additional disease-specific references available upon request.

Cystic Fibrosis Mutation Analysis

Patient Name: GB 497 ,ferrIng Physician: Patient ID:		Cryoblology, Inc. 4830-D Knightsbridge Boulevard Columbus, OH 43214
DOB: - Sex:M SSN:-	Date Collected: Date Received: LABID: Hospital ID: Specimen Type: BLDPER	

Ethnicity: Ashkenazi Jewish

Indication: Carrier Test/ Gamete donor

RESULTS: Negative for the 97 mutations analyzed

INTERPRETATION:

This individual is negative for the mutations analyzed. This result reduces but does not eliminate the risk to be a CF carrier. See Comments for ethnic-specific risk reductions based on a negative family history.

COMMENTS:

Mutations Detection Ratn among Ethnic; Group	Detection Rates are based on mutation f19quencies In patients affected with cystic fibrosis. Among individuala with an atypical or mild presentation (e.g. congenilal absence of the vas deferens, pancreatitis) detection rates may vary from tt,ose provided here.			
Icily	Carrier rlak reduction when no family hlatory	Detection rate	ReferencH	
African American	1/61 to 11316	81%	ACOG Committee Opinion 486 PMID: 21422883; Helm PMID: 11388766	
Ashkenazi Jewish	1/24 to 1/767	97%	ACOG CommKtee Opinion 466 PMID: 21422883	
Asian American	1/94 to <1/183	49.55%	ACOG Committee Opinion 486 PMIO: 21422883; Watson PMID: 1384328	
Caucasian	1125 lo 11343	93%	ACOO Commtttee Opinion 486 PMIO: 21422883; Helm PMIO: 11388766; Palomaki PMIO: 11682786	
Hispanic	1/58 to 1/260	78%	ACOG Committee Opinion 488 PMIO: 21422883; Heim PMID: 11388756; catifomla Database: (http://WWW,cdph.ca.gov/programs/GDSP/Documents/CFTabelCurrent.pdf)	
Jaw!sh, non•Ashkenazi		Varies by country of origin	Orgad PMID: 11336401; Kerem PMID:10464623	
Mixed or Other		Not Provided	For counseling, consider using the ethnic background with the most conservative risk estimates.	

This interpretation is based on the clinical and family relationship information provided and the current understanding of the molecular genetics of this condition.

METHOD/ LIMITATIONS:

CFTR gene regions are amplified enzymatically. The 97 CF mutations are tested by multiplex allele-specific primer extension, bead array hybridization, and fluorescence detection. The test discriminates between p.F608del and three polymorphisms (p.1S06V, p.1507V and p.F508C). Numbering and nomenclature follow Human Genome Variation Society recommendations. Mutations and their legacy names are listed at www.integratedgenetics.com/CFplus. The DNA reference sequence Is NG_016465.1. False positive or negative results may occur for reasons that Include genetic variants, blood transfusions, bone marrow transplantation, erroneous representation of family relationships, or maternal contamination of a fetal sample.

Integrated Genetics is a bullinen unit of Eacterix Genetie Laboratoriea, LLC, a wholly-owned 10b81dary of Laboratory Corporation of America Holdings.

Electronically Signed By: Lynne S Rosenblum, Ph.D., FACMG, on -

包 Counsyl

RESULTS RECIPIENT **CRYOBIOLOGY, INC.** Attn: Dr. David Prescott 4830-D Knightsbridge Blvd. Columbus, OH 43214 Phone: (614) 451-4375 Fax: (614) 451-5284 NPI: Report Date:

MALE CB 497 DOB: Ethnicity: Ashkenazi Jewish Sample Type: EDTA Blood Date of Collection: Date Received: Date Tested: Barcode: Indication: Egg or sperm donor FEMALE

NEGATIVE

N/A

Foresight[™] Carrier Screen

ABOUT THIS TEST

The **Counsyl Foresight Carrier Screen** utilizes sequencing, maximizing coverage across all DNA regions tested, to help you learn about your chance to have a child with a genetic disease.

RESULTS SUMMARY

Risk Details	CB 497	Partner
Panel Information	Foresight Carrier Screen Ashkenazi Jewish Panel (19 conditions tested)	N/A
All conditions tested A complete list of all conditions tested can be found on page 4.	NEGATIVE No disease-causing mutations were detected.	N/A e

CLINICAL NOTES

None

NEXT STEPS

 If necessary, patients can discuss residual risks with their physician or a genetic counselor.

Counsyl has renamed its products effective July 19, 2017. The Family Prep Screen is now the Foresight Carrier Screen. The new names now appear on all communications from Counsyl. If you have any questions, please contact Counsyl directly.

180 Kimball Way, South San Francisco, CA 94080 (888) COUNSYL | http://www.counsyl.com

ि Counsyl

RESULTS RECIPIENT CRYOBIOLOGY, INC. Attn: Dr. David Prescott NPI: Report Date:

MALE CB 497 DOB: Ethnicity: Ashkenazi Jewish Barcode: FEMALE N/A

Methods and Limitations

CB 497 [Foresight Carrier Screen]: sequencing with copy number analysis, spinal muscular atrophy, and analysis of homologous regions.

Sequencing with copy number analysis

High-throughput sequencing and read depth-based copy number analysis are used to analyze the listed exons, as well as selected intergenic and intronic regions, of the genes in the Conditions Tested section of the report. The region of interest (ROI) of the test comprises these regions, in addition to the 20 intronic bases flanking each exon. In a minority of cases where genomic features (e.g., long homopolymers) compromise calling fidelity, the affected intronic bases are not included in the ROI. The ROI is sequenced to high coverage and the sequences are compared to standards and references of normal variation. More than 99% of all bases in the ROI are sequenced at greater than the minimum read depth. Mutations may not be detected in areas of lower sequence coverage. Small insertions and deletions may not be as accurately determined as single nucleotide variants. Genes that have closely related pseudogenes may be addressed by a different method. *CFTR* and *DMD* testing includes analysis for both large (exon-level) deletions and duplications with an average sensitivity of 99%, while other genes are only analyzed for large deletions with a sensitivity of >75%. However, the sensitivity may be higher for selected founder deletions. If *G/B2* is tested, two large upstream deletions which overlap *G/B6* and affect the expression of *G/B2*, del(*G/B6*-D13S1830) and del(*G/B6*-D13S1854), are also analyzed. Mosalcism or somatic variants present at low levels may not be detected. If detected, these may not be reported.

Detection rates are determined by using literature to estimate the fraction of disease alleles, weighted by frequency, that the methodology is unable to detect. Detection rates only account for analytical sensitivity and certain variants that have been previously described in the literature may not be reported if there is insufficient evidence for pathogenicity. Detection rates do not account for the disease-specific rates of de novo mutations.

All variants that are a recognized cause of the disease will be reported. In addition, variants that have not previously been established as a recognized cause of ⁻¹isease may be identified. In these cases, only variants classified as "likely" pathogenic are reported. Likely pathogenic variants are described elsewhere in the report , "likely to have a negative impact on gene function". Likely pathogenic variants are evaluated and classified by assessing the nature of the variant and reviewing reports of allele frequencies in cases and controls, functional studies, variant annotation and effect prediction, and segregation studies. Exon level duplications are assumed to be in tandem and are classified according to their predicted effect on the reading frame. Benign variants, variants of uncertain significance, and variants not directly associated with the intended disease phenotype are not reported. Curation summaries of reported variants are available upon request.

Spinal muscular atrophy

Targeted copy number analysis is used to determine the copy number of exon 7 of the *SMN1* gene relative to other genes. Other mutations may interfere with this analysis. Some individuals with two copies of *SMN1* are carriers with two *SMN1* genes on one chromosome and a *SMN1* deletion on the other chromosome. This is more likely in individuals who have 2 copies of the *SMN1* gene and are positive for the g.27134T>G SNP, which affects the reported residual risk; Ashkenazi Jewish or Asian patients with this genotype have a high post-test likelihood of being carriers for SMA and are reported as carriers. The g.27134T>G SNP is only reported in individuals who have 2 copies of *SMN1*.

Analysis of homologous regions

A combination of high-throughput sequencing, read depth-based copy number analysis, and targeted genotyping is used to determine the number of functional gene copies and/or the presence of selected loss of function mutations in certain genes that have homology to other regions. The precise breakpoints of large deletions in these genes cannot be determined, but are estimated from copy number analysis. High numbers of pseudogene copies may interfere with this analysis.

If *CYP21A2* is tested, patients who have one or more additional copies of the *CYP21A2* gene and a loss of function mutation may not actually be a carrier of 21-hydroxylase-deficient congenital adrenal hyperplasia (CAH). Because the true incidence of non-classic CAH is unknown, the residual carrier and reproductive risk numbers on the report are only based on published incidences for classic CAH. However, the published prevalence of non-classic CAH is highest in individuals of Ashkenazi Jewish, Hispanic, Italian, and Yugoslav descent. Therefore, the residual and reproductive risks are likely an underestimate of overall chances for 21-hydroxylase-deficient CAH, especially in the aforementioned populations, as they do not account for non-classic CAH. If *HBA11HBA2* are tested, some individuals

th four alpha globin genes may be carriers, with three genes on one chromosome and a deletion on the other chromosome. This and similar, but rare, carrier states, where complementary changes exist in both the gene and a pseudogene, may not be detected by the assay.

^但Counsyl

RESULTS RECIPIENT CRYOBIOLOGY, INC. Attn: Dr. David Prescott NPI: Report Date:

MALE CB 497 DOB: Ethnicity: Ashkenazi Jewish Barcode: FEMALE N/A

Limitations

In an unknown number of cases, nearby genetic variants may interfere with mutation detection. Other possible sources of diagnostic error include sample mix-up, trace contamination, bone marrow transplantation, blood transfusions and technical errors. This test is designed to detect and report germline alterations. While somatic variants present at low levels may be detected, these may not be reported. If more than one variant is detected in a gene, additional studies may be necessary to determine if those variants lie on the same chromosome or different chromosomes. The test does not fully address all inherited forms of intellectual disability, birth defects and genetic disease. A family history of any of these conditions may warrant additional evaluation. Furthermore, not all mutations will be identified in the genes analyzed and additional testing may be beneficial for some patients. For example, individuals of African, Southeast Asian, and Mediterranean ancestry are at increased risk for being carriers for hemoglobinopathles, which can be identified by CBC and hemoglobin electrophoresis or HPLC (*ACOG Practice Bulletin No. 78. Obstet.Gynecol. 2007;109:229-37*).

This test was developed and its performance characteristics determined by Counsyl, inc. It has not been cleared or approved by the US Food and Drug Administration (FDA). The FDA does not require this test to go through premarket review. This test is used for clinical purposes. It should not be regarded as investigational or for research. This laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high-complexity clinical testing. These results are adjunctive to the ordering physician's evaluation. CLIA Number: **#05D1102604**.

LAB DIRECTORS

Hyunseok Kang

H. Peter Kang, MD, MS, FCAP

仓 Counsyl

RESULTS RECIPIENT CRYOBIOLOGY, INC. Attn: Dr. David Prescott NPI:

Report Date:

MALE CB 497 DOB: Ethnicity: Ashkenazi lewish Barcode:

FEMALE

Conditions Tested

ABCC8-related Hyperinsulinism - Gene: ABCC8. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000352:1-39. Detection Rate: Ashkenazi Jewish >99%.

Bloom Syndrome - Gene: BLM. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000057:2-22. Detection Rate: Ashkenazi Jewish >99%. Canavan Disease - Gene: ASPA. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000049:1-6. Detection Rate: Ashkenazi Jewish 98%. Cystic Fibrosis - Gene: CFIR. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000492:1-27. IVS8-5T allele analysis is only reported in the presence of the R117H mutation. Detection Rate: Ashkenazi Jewish >99%. Familial Dysautonomia - Gene: IKBKAP. Autosomal Recessive. Sequencing with Copy Number Analysis.Exons: NM_003640:2-37. Detection Rate: Ashkenazi Jewish >99%.

Fanconi Anemia Type C - Gene: FANCC. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000136:2-15. Detection Rate: Ashkenazi jewish >99%.

FKTN-related Disorders - Gene: FKTN. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_001079802:3-11. Detection Rate: Ashkenazi Jewish >99%.

Gaucher Disease - Gene: GBA. Autosomal Recessive. Analysis of Homologous Regions. Variants (10): D409V, D448H, IVS2+1G>A, L444P, N370S, R463C, R463H, R496H, V394L, p.L29Afs*18. Detection Rate: Ashkenazi Jewish 95%.

Glycogen Storage Disease Type Ia - Gene: G6PC. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000151:1-5. Detection Rate: Ashkenazi Jewish >99%.

Hexosaminidase A Deficiency (Including Tay-Sachs Disease) - Gene: HEXA. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons:

M_000520:1-14. Detection Rate: Ashkenazi Jewish >99%.

Joubert Syndrome 2 - Gene: TMEM216. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_001 173990:1-5. Detection Rate: Ashkenazi Jewish >99%.

Lipoamide Dehydrogenase Deficiency - Gene: DLD. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000108:1-14. Detection Rate: Ashkenazi Jewish >99%.

Maple Syrup Urine Disease Type 1B - Gene: BCKDHB. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_183050:1-10. Detection Rate: Ashkenazi Jewish >99%.

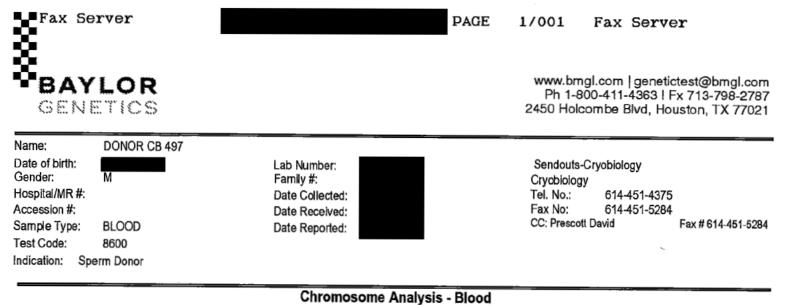
Mucolipidosis IV - Gene: MCOLN1. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_020533:1-14. Detection Rate: Ashkenazi Jewish >99%. NEB-related Nemaline Myopathy - Gene: NEB. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_001271208:3-80,117-183. Detection Rate: Ashkenazi Jewish >99%.

Niemann-Pick Disease, SMPD1-associated - Gene: SMPD1. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_000543:1-6. Detection Rate: Ashkenazi Jewish >99%.

PCDH15-related Disorders - Gene: PCDH15. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_033056:2-33. Detection Rate: Ashkenazi Jewish 93%.

Spinal Muscular Atrophy - Gene; SMN1. Autosomal Recessive. Spinal Muscular Atrophy. Variant (1): SMN1 copy number. Detection Rate: Ashkenazi Jewish 94%. Usher Syndrome Type 3 - Gene: CLRN1. Autosomal Recessive. Sequencing with Copy Number Analysis. Exons: NM_174878:1-3. Detection Rate: Ashkenazi Jewish >99%.

l Counsyl


RESULTS RECIPIENT CRYOBIOLOGY, INC. Attn: Dr. David Prescott NPI: Report Date:

MALE CB 497 DOB: Ethnicity: Ashkenazi lewish Barcode:

Risk Calculations

Below are the risk calculations for all conditions tested. Since negative results do not completely rule out the possibility of being a carrier, the **residual risk** represents the patient's post-test likelihood of being a carrier and the **reproductive risk** represents the likelihood the patient's future children could inherit each disease. These risks are inherent to all carrier screening tests, may vary by ethnicity, are predicated on a negative family history and are present even after a negative test result. Inaccurate reporting of ethnicity may cause errors in risk calculation. The reproductive risk presented is based on a hypothetical pairing with a partner of the same ethnic group.

Disease	CB 497 Residual Risk	Reproductive Risk	
ABCC8-related Hyperinsulinism	1 in 6,700	< 1 in 1,000,000	
Bloom Syndrome	1 in 11,000	< 1 in 1,000,000	
Canavan Disease	1 in 3,300	1 in 720,000	
Cystic Fibrosis	1 In 2,700	1 in 290,000	
amillal Dysautonomia	1 in 3,000	1 in 370,000	
anconi Anemia Type C	1 in 8,900	< 1 in 1,000,000	
KTN-related Disorders	1 in 15,000	and the fillester of the process of the second	
aucher Disease	1 in 310	< 1 in 1,000,000	
ilycogen Storage Disease Type Ia	1 in 7,000	1 in 19,000	
exosaminidase A Deficiency (Including Tay-Sachs Disease)	1 in 3,000	< 1 in 1,000,000	
oubert Syndrome 2	1 in 9,100	1 in 350,000	
poamide Dehydrogenase Deficiency	1 in 9,300	< 1 in 1,000,000	
aple Syrup Urine Disease Type 1B		< 1 in 1,000,000	
lucolipidosis IV	1 in 9,600	< 1 in 1,000,000	
	1 in 10,000	< 1 in 1,000,000	
EB-related Nemaline Myopathy	1 in 11,000	< 1 in 1,000,000	
lemann-Pick Disease, SMPD1-associated CDH15-related Disorders	1 in 10,000	< 1 in 1,000,000	
	1 in 2,000	< 1 in 1,000,000	
pinal Muscular Atrophy	Negative for g.27134T>G SNP SMN1: 2 copies	1 in 94,000	
Isher Syndrome Type 3	1 in 580 1 in 12,000	< 1 in 1,000,000	

METHOD OF ANALYSIS: GTG-Banding				
Cultures:	2	No. of images:	7	
Cells counted:	30	Cells karyotyped:	3	
Cells analyzed:	5	Band resolution:	550	

RESULTS:

46.XY

INTERPRETATION :

Normal male chromosome analysis. Analysis of 30 cells rules out 10% mosaicism at the 95% confidence level.

DISCLAIMER:

The resolution of analysis for this standard cytogenetic methodology does not routinely detect subtle rearrangements (<5Mb) or low-level mosaicism. Standard cytogenetic analysis cannot detect microdeletions/microduplications that might be diagnosed with Chromosomal Microarray Analysis. These results do not rule out the possibility of genetic conditions not detectable by cytogenetic analysis. Depending upon the clinical indication, additional testing may be warranted.

പ്പായ് പുറ

Carlos A. Bacino, M.D., FACMG ABMG Certified Cytogeneticist and Molecular Geneticist Medical Director

Veim Bi

Weimin Bi, Ph.D. ABMG Certilied Clinical Cytogeneticist Assistant Laboratory Director

This test was developed and its performance characteristics determined by Baylor Miraca Genetics Laboratories DBA Baylor Genetics (CAP# 2109314 / CLIA# 4500660090). It has not been cleared or approved by the FDA. The laboratory is regulated under CLIA as qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research.