

4845 Knightsbridge Blvd. Suite 200 Columbus, OH 43214 Phone: (614) 451-4375 Fax: (614) 451-5284

Genetic Testing Summary

Enclosed are the genetic testing results for

CB 569

No amount of genetic testing can guarantee that a child will not be affected with a genetic condition. Genetic testing can inform you of the likelihood of passing on the genetic conditions that are tested for, but it cannot eliminate the risk of passing on any genetic condition.

The genetic conditions Cryobio tests for are inherited in an autosomal recessive manner. This means that the child would have to inherit a genetic mutation from both the sperm source and the egg source to be affected with the condition. When both the sperm source and the egg source have undergone genetic carrier screening and the test results are negative, the risk of a child being affected with the conditions tested for is significantly reduced, but it cannot be completely eliminated.

All recipients should discuss both or their own risk for passing on genetic conditions and whether would benefit from genetic counseling and testing with their health care provider. Before using a donor that is a carrier for a specific recessive genetic condition or conditions, we strongly recommend that the recipient (or egg source, if different) consider genetic counseling and testing to determine if they are a carrier for the same genetic condition or conditions as the donor.

Screening and testing have changed dramatically over the years, and so the screening and testing done on each donor may very depending on the testing that was in place when he was actively in Cryobio's donor program. Earlier donors may not have had as extensive testing as later donors. Screening and testing may change again in the future, so please review the results each time before ordering as both the testing done and the results may change.

A note about donor CB 569's genetic carrier screening results:

At the time donor CB 569 was entering the donor program, Cryobio was in the process of choosing a new laboratory to perform genetic carrier screening through. Because of this, donor CB 569 had expanded genetic carrier screening from two different laboratories to determine their carrier status for a combined total of 689 recessive genetic conditions. Genetic testing is complex, and every lab is set up differently to decide which genetic variants should be reported. This is one reason why even after negative carrier screening, there is a residual (or remaining) risk/possibility of being a carrier. Referring to the performing laboratories residual risk after negative testing is important to keep in mind, as negative testing does not eliminate the risk of being a carrier for any condition. Donor CB 569 was reported as a carrier by one lab (Invitae) for three conditions, while the other lab (LabCorp) reported him as negative as a carrier. This summary is provided to help summarize the reasons for these differences. Please contact Cryobio if you have any additional questions.

- Cystic fibrosis and *CFTR*-related conditions (*CFTR* gene):
 - Different combinations of specific mutations or variants in the *CFTR* gene can result in different levels of severity of cystic fibrosis or *CFTR*-related conditions. The specific variant identified in donor CB 569's *CFTR* gene is called the "5T 12 TG variant". It is unique in that it has the potential to be clinically significant, but only when in combination with other specific types of *CFTR* variants. Additionally, it can be seen in individuals with some of the "less severe *CFTR* related conditions", but also in individuals who are asymptomatic. Because of this, some practitioners' guidelines (for example the national society of genetic counselors) do not recommend the routine screening and evaluation of the 5T variant unless the presence of an additional variant (called R117H) that is known to be influenced heavily by the poly T tract status. Therefore, LabCorp chooses not to report the poly 5T 12 TG variant status in individuals if it is the only variant found, while Invitae chooses to report it anyway.
- Congenital adrenal hyperplasia due to 21-hydroxylase deficiency (CYP21A2 gene):
 - LabCorp only tests for 7 of the more "common" mutations in the CYP21A2 gene; ie-their testing platform does not screen for the specific variant reported and identified by Invitae for donor CB 569. Because Invitae does look beyond the 7 common mutations, donor CB 569 was identified as a carrier by Invitae.
- Glycogen storage disease type II (Pompe disease) (GAA gene):
 - The specific c.1194+3G>C variant that donor CB 569 is reported to be a carrier for is a VUS in LabCorp's system, and most labs do not report VUS on carrier screening panels.
 - A variant of uncertain significance (VUS) in genetics refers to a change or mutation that has been identified in a gene, but its clinical significance and association with disease risk is unclear. VUS results typically require further research, functional analysis, or additional clinical data to determine whether they are pathogenic (disease-causing) or benign. Different labs may classify VUS' differently due to variations in interpretation criteria, access to data, expertise, evolving knowledge, sample size, in-house databases, testing methods, reporting practices, and collaboration, making it essential to consider residual risk estimates when screening negative for a given condition through carrier screening.
 - Invitae has interpreted the available data them, and reports this variant to be diseasecausing, therefore reporting donor CB 569 as a carrier for GSD type II.

Patient name: DOB: Sex assigned at birth: Gender: Patient ID (MRN):	CB 569 Male	Sample type: Sample collection date: Sample accession date:	Blood 31-MAY-2023 01-JUN-2023	Report date: Invitae #: Clinical team:	15-JUN-2023 Chase Fulton David Prescott
Reason for testing Gamete donor			t performed itae Comprehensive Carrier	Screen	

- Primary Panel (CF, SMA)
- Add-on Comprehensive Carrier Screen genes

RESULT: POSITIVE

This carrier test evaluated 556 gene(s) for genetic changes (variants) that are associated with an increased risk of having a child with a genetic condition. Knowledge of carrier status for one of these conditions may provide information that can be used to assist with family planning and/or preparation. Carrier screening is not intended for diagnostic purposes. To identify a potential genetic basis for a condition in the individual being tested, diagnostic testing for the gene(s) of interest is recommended.

This test shows the presence of clinically significant genetic change(s) in this individual in the gene(s) indicated below. No other clinically significant changes were identified in the remaining genes evaluated with this test.

RESULTS	GENE	VARIANT(S)	INHERITANCE	PARTNER TESTING RECOMMENDED
Carrier: CFTR-related conditions	CFTR	c.1210-34TG[12]T[5] (Intronic)	Autosomal recessive	Yes
Carrier: Congenital adrenal hyperplasia due to 21-hydroxylase deficiency	CYP21A2	c.1360C>T (p.Pro454Ser)	Autosomal recessive	Yes
Carrier: Glycogen storage disease type II (Pompe disease)	GAA	c.1194+3G>C (Intronic)	Autosomal recessive	Yes

Patient name: CB 569 DOB: Invitae #:

Next steps

- See the table above for recommendations regarding testing of this individual's reproductive partner.
- Even for genes that have a negative test result, there is always a small risk that an individual could still be a carrier. This is called "residual risk." See the Carrier detection rates and residual risks document.
- Discussion with a physician and/or genetic counselor is recommended to further review the implications of this test result and to understand these results in the context of any family history of a genetic condition.
- All patients, regardless of result, may wish to consider additional screening for hemoglobinopathies by complete blood count (CBC) and hemoglobin electrophoresis, if this has not already been completed.
- Individuals can register their tests at https://www.invitae.com/patients/ to access online results, educational resources, and next steps.

INVITAE CARRIER SCREEN RESULTS

Patient name: CB 569 DOB:

Invitae #:

Clinical summary

RESULT: CARRIER

CFTR-related conditions

A single Pathogenic variant, c.1210-34TG[12]T[5] (Intronic), was identified in CFTR. This variant has unique interpretation considerations. See "What are CFTR-related conditions?" and Variant details for additional information.

What are CFTR-related conditions?

The c.1210-34TG[12]T[5] cystic fibrosis (CF) variant was identified in this individual. There are multiple forms of the 5T variant, which are classified by the number of TG repeats. Each form of the 5T variant is associated with a different degree of risk for CFTR-related symptoms when inherited in combination with a pathogenic variant from the other parent, ranging from a healthy individual to congenital absence of the vas deferens (CAVD) in males to an individual with mild/atypical CF. The combination of the c.1210-34TG[12]T[5] variant with a severe pathogenic CFTR variant from the other parent is associated with symptoms in the majority of individuals; however, most individuals who are homozygous for the c.1210-34TG[12]T[5] variant are asymptomatic (see Variant details section).

R117H is another change which can occur within CFTR as part of a complex allele with a 5T variant. If present, the R117H variant would be reported as a Result to Note.

CFTR-related conditions encompass a spectrum of disorders that typically impact the respiratory and/or digestive systems, and cause male infertility. Cystic fibrosis (CF) is typically a childhood-onset disease in which abnormally thick mucus production can cause a variety of symptoms including recurrent respiratory infections and progressive lung disease, as well as nutritional deficiencies and poor growth due to deficiency of enzymes produced by the pancreas to digest food (pancreatic insufficiency). Symptoms range from mild to severe. Prognosis depends on the severity of symptoms as well as response to treatments; many affected individuals live well into adulthood. Milder forms of CFTR-related conditions include CAVD associated with male infertility, variable respiratory manifestations, and hereditary pancreatitis. Life span is not typically impacted with less severe CFTR-related conditions. Intellect is not affected with the various CFTR-related conditions. The combination of variants identified in an affected individual impacts the observed clinical features and severity of the symptoms. Additional genetic and environmental factors are believed to play a role in determining the risk of developing these complex CFTR-related conditions.

Additionally, individuals with a single disease-causing CFTR variant (heterozygous carriers) may have an approximately 4-10 fold increased risk for chronic pancreatitis, although the absolute risk of pancreatitis remains low (less than 1 in 100). Hereditary pancreatitis is characterized by recurrent episodes of acute inflammation of the pancreas (pancreatitis) beginning in childhood or adolescence, leading to chronic pancreatitis. Chronic pancreatitis is a risk factor for pancreatic cancer. Due to this potential increased risk for chronic pancreatitis, heterozygous carriers may consider follow-up with a medical provider.

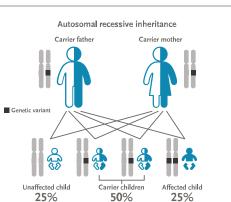
Follow-up depends on each affected individual's specific situation, and discussion with a healthcare provider should be considered.

Invitae #:

Next steps

Carrier testing for the reproductive partner is recommended.

+ If your partner tests positive:


In autosomal recessive inheritance, an individual must have disease-causing genetic changes in each copy of the CFTR gene to be affected. Carriers, who have a disease-causing genetic change in only one copy of the gene, typically do not have symptoms. When both reproductive partners are carriers of an autosomal recessive condition, there is a 25% chance for each child to have the condition.

(-) If your partner tests negative:

A negative carrier test result reduces, but does not eliminate, the chance that a person may be a carrier. The risk that a person could still be a carrier, even after a negative test result, is called a residual risk. See the table below for your partner's hypothetical

residual risk after testing negative for CFTR-related conditions. These values are provided only as a guide, are based on the detection rate for the condition as tested at Invitae, and assume a negative family history, the absence of symptoms, and vary based on the ethnic background of an individual. For genes associated with both dominant and recessive inheritance, the numbers provided apply to the recessive condition(s) associated with the gene.

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT
CFTR-related conditions (AR) NM_000492.3	CFTR *	Pan-ethnic - classic CF	1 in 45	1 in 4400
		Pan-ethnic - classic CF and CFTR- related disorders	1 in 9	1 in 800

Invitae #:

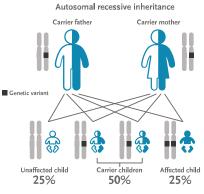
RESULT: CARRIER

Congenital adrenal hyperplasia due to 21-hydroxylase deficiency

A single Pathogenic variant, c.1360C>T (p.Pro454Ser), was identified in CYP21A2. This variant is primarily associated with non-classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency?" and Variant details for additional information.

What is congenital adrenal hyperplasia due to 21-hydroxylase deficiency?

21-hydroxylase deficiency (21-OHD) is one of a group of conditions called congenital adrenal hyperplasia (CAH), which impair hormone production by the adrenal glands. The adrenal glands produce hormones that regulate many essential functions in the body, including sexual development and maturation. There are several types of CAH, which are caused by changes in different genes.


Symptoms of 21-OHD CAH range in severity, and are caused by the adrenal glands producing excess male sex hormones (androgens). There are three types of 21-OHD which include two classic forms, known as the salt-wasting and simple virilizing types, and the third is called the non-classic type. The salt-wasting type is the most severe, the simple virilizing type is less severe, and the non-classic type is the mildest form. Individuals with the salt-wasting type of 21-OHD lose large amounts of sodium in the urine, which can be life-threatening in early infancy. Infants with the simple virilizing type of 21-OHD do not experience salt-wasting. Female infants with classic 21-OHD usually have external genitalia that do not look clearly male or female (ambiguous genitalia). Male infants with classic 21-OHD usually have normal genitalia, although the testes may be smaller than typical. Individuals with a classic form of 21-OHD may have decreased fertility. Females with non-classic 21-OHD are born with typical external genitalia. They may experience irregular menstruation, decreased fertility, excess hair growth on the face and body (hirsutism), and male-pattern baldness. Males with non-classic 21-OHD may experience early beard growth and have small testes. Some individuals with non-classic 21-OHD may not have signs or symptoms of the condition (asymptomatic). The form(s) of 21-OHD CAH for which an individual would be at risk depends on the specific CYP21A2 variants inherited from the reproductive parents. Follow-up depends on each affected individual's specific situation, and discussion with a healthcare provider should be considered.

Next steps

Carrier testing for the reproductive partner is recommended.

+ If your partner tests positive:

The various forms of congenital adrenal hyperplasia due to 21-hydroxylase deficiency are inherited in an autosomal recessive fashion. In autosomal recessive inheritance, an individual must have disease-causing genetic changes in each copy of the CYP21A2 gene to be affected. Carriers, who have a disease-causing genetic change in only one copy of the gene, typically do not have symptoms. When both reproductive partners are carriers of an autosomal recessive condition, there is a 25% chance for each child to have the condition. The form(s) of 21-OHD CAH for which an individual's offspring would be at risk depends on the specific CYP21A2 variants inherited from the reproductive parents. When an individual has a CYP21A2 variant on each chromosome (in trans), and at least one of the variants is most commonly associated with the non-classic form of the condition, then the individual is most likely to be at risk to have non-classic 21-OHD.

) If your partner tests negative:

A negative carrier test result reduces, but does not eliminate, the chance that a person may be a carrier. The risk that a person could still be a carrier, even after a negative test result, is called a residual risk. See the table below for your partner's hypothetical residual risk after testing negative for congenital adrenal hyperplasia due to 21-hydroxylase deficiency. These values are provided only as a guide, are based on the detection rate for the condition as tested at Invitae, and assume a negative family history, the absence of symptoms, and vary based on the ethnic background of an individual. For genes associated with both dominant and recessive inheritance, the numbers provided apply to the recessive condition(s) associated with the gene.

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT
Congenital adrenal hyperplasia due to 21-hydroxylase deficiency (AR) NM_000500.7	CYP21A2 *	Pan-ethnic	1 in 61	1 in 751

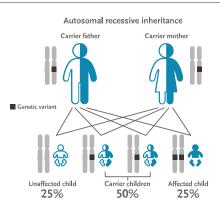
Invitae #:

RESULT: CARRIER

Glycogen storage disease type II (Pompe disease)

A single Pathogenic variant, c.1194+3G>C (Intronic), was identified in GAA.

What is glycogen storage disease type II (Pompe disease)?


Glycogen storage disease (GSD) is a group of conditions in which individuals have difficulty breaking down a complex sugar called glycogen. A buildup of glycogen impairs the function of certain organs and tissues. The symptoms of glycogen storage disease type II (GSD II), also called Pompe disease, vary in age of onset and severity. Classical Pompe disease typically presents in infancy and is characterized by low muscle tone (hypotonia), poor growth (failure to thrive), muscle weakness (myopathy), an enlarged heart (cardiomegaly) and thickened heart muscle (hypertrophic cardiomyopathy). The condition is often fatal in infancy or early childhood due to heart or breathing problems. Non-classical forms of Pompe disease can present in infancy, childhood, adolescence, or adulthood, often with milder symptoms and slower disease progression. Symptoms may include weakness in the arm and leg muscles that are closest to the body (proximal myopathy) and breathing difficulties, with little to no heart muscle involvement. Enzyme replacement therapy is available and early initiation may delay the onset of the symptoms and reduce their severity. Follow-up depends on each affected individual's specific situation, and discussion with a healthcare provider should be considered.

Next steps

Carrier testing for the reproductive partner is recommended.

(+) If your partner tests positive:

In autosomal recessive inheritance, an individual must have disease-causing genetic changes in each copy of the GAA gene to be affected. Carriers, who have a disease-causing genetic change in only one copy of the gene, typically do not have symptoms. When both reproductive partners are carriers of an autosomal recessive condition, there is a 25% chance for each child to have the condition.

If your partner tests negative:

A negative carrier test result reduces, but does not eliminate, the chance that a person may be a carrier. The risk that a person could still be a carrier, even after a negative test result, is called a residual risk. See the table below for your partner's hypothetical

residual risk after testing negative for glycogen storage disease type II (Pompe disease). These values are provided only as a guide, are based on the detection rate for the condition as tested at Invitae, and assume a negative family history, the absence of symptoms, and vary based on the ethnic background of an individual. For genes associated with both dominant and recessive inheritance, the numbers provided apply to the recessive condition(s) associated with the gene.

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT
Glycogen storage disease type II (Pompe disease) (AR) NM_000152.3	GAA	Pan-ethnic	1 in 100	1 in 9900

INVITAE CARRIER SCREEN RESULTS

Patient name: CB 569 DOB:

Invitae #:

Results to note

FMR1

Normal triplet repeats observed: 30. CGG repeat ranges: normal (<45 CGG repeats), intermediate (45-54 CGG repeats), premutation (55-200 CGG repeats), full mutation (>200 CGG repeats).

SMN1

Negative result. SMN1: 2 copies; c.*3+80T>G not detected.

Pseudodeficiency allele(s)

- Benign change, c.1685T>C (p.Ile562Thr), known to be a pseudodeficiency allele, identified in the GALC gene. Pseudodeficiency alleles are not known to be associated with disease, including Krabbe disease.
- The presence of a pseudodeficiency allele does not impact this individual's risk to be a carrier. Individuals with pseudodeficiency alleles may exhibit false positive results on related biochemical tests, including newborn screening. However, pseudodeficiency alleles are not known to cause disease, even when there are two copies of the variant (homozygous) or when in combination with another disease-causing variant (compound heterozygous). Carrier testing for the reproductive partner is not indicated based on this result.

Variant details

CFTR, Intron 9, c.1210-34TG[12]T[5] (Intronic), heterozygous, PATHOGENIC

- This sequence change, also referred to as 5T;TG12 or TG12-5T in the literature, consists of 12 TG and 5 T sequence repeats on the same chromosome, and is located in intron 9 of the CFTR gene. It does not directly change the encoded amino acid sequence of the CFTR protein.
- The frequency data for this variant in the population databases is considered unreliable, as metrics indicate poor data quality at this position in the gnomAD database.
- The TG[12]T[5] allele has been observed in males with congenital bilateral absence of the vas deferens (CBAVD) and in both males and females with cystic fibrosis (CF) when present on the opposite chromosome (in trans) from a severe pathogenic CFTR variant (PMID: 14685937). When this allele is observed in trans with a severe pathogenic CFTR variant, the penetrance of CFTR-related conditions (CBAVD and/or non-classic CF) is expected to be high (>90%); however, the penetrance of classic CF is low (<20%) (PMID: 14685937, 27447098). Individuals who are homozygous for this variant, or who have this variant in combination with TG[11]T[5], are likely to be asymptomatic (PMID: 34196078).</p>
- Algorithms developed to predict the effect of variants on protein structure and function are not available or were not evaluated for this variant.
- Experimental studies demonstrate that the 5T allele leads to exclusion of exon 10 (referred to as exon 9 in some publications) from the mRNA, which ultimately results in a non-functional CFTR protein (PMID: 7691356, 7684641, 10556281, 14685937, 21658649). Importantly, the number of TG repeats (11, 12 or 13) modifies the extent of exon 10 skipping when in cis with the 5T allele (PMID: 14685937, 10556281, 9435322). In a minigene assay, the percentage of CFTR mRNA without exon 10 was 54% for TG[11]T[5], 72% for TG[12]T[5] and 100% for TG[13]T[5] (PMID: 10556281).
- Algorithms developed to predict the effect of sequence changes on RNA splicing suggest that this variant is not likely to affect RNA splicing.
- For these reasons, this variant has been classified as Pathogenic.

CYP21A2, Exon 10, c.1360C>T (p.Pro454Ser), heterozygous, PATHOGENIC

- This sequence change replaces proline, which is neutral and non-polar, with serine, which is neutral and polar, at codon 454 of the CYP21A2 protein (p.Pro454Ser).
- The frequency data for this variant in the population databases (gnomAD) is considered unreliable due to the presence of homologous sequence, such as pseudogenes or paralogs, in the genome.

Invitae #:

- This missense change has been observed in individual(s) with clinical features of non-classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency (PMID: 1406699, 10720040, 12222711, 12887291, 21444649, 21843885, 22270556, 23073904, 31333583, 32966723). In at least one individual the data is consistent with being in trans (on the opposite chromosome) from a pathogenic variant.
- This variant is also known as P453S.
- ClinVar contains an entry for this variant (Variation ID: 12159).
- Advanced modeling of protein sequence and biophysical properties (such as structural, functional, and spatial information, amino acid conservation, physicochemical variation, residue mobility, and thermodynamic stability) performed at Invitae indicates that this missense variant is not expected to disrupt CYP21A2 protein function.
- Experimental studies have shown that this missense change affects CYP21A2 function (PMID: 18381579, 24953648, 30968594).
- For these reasons, this variant has been classified as Pathogenic.

GAA, Intron 7, c.1194+3G>C (Intronic), heterozygous, PATHOGENIC

- This sequence change falls in intron 7 of the GAA gene. It does not directly change the encoded amino acid sequence of the GAA protein. It affects a nucleotide within the consensus splice site.
- This variant is present in population databases (rs368539333, gnomAD 0.03%).
- This variant has been observed in individual(s) with biochemical features of Pompe disease (PMID: 33073003, 33202836; Invitae; External communication). In at least one individual the data is consistent with being in trans (on the opposite chromosome) from a pathogenic variant.
- ClinVar contains an entry for this variant (Variation ID: 198393).
- Variants that disrupt the consensus splice site are a relatively common cause of aberrant splicing (PMID: 17576681, 9536098). Algorithms developed to predict the effect of sequence changes on RNA splicing suggest that this variant may disrupt the consensus splice site.
- For these reasons, this variant has been classified as Pathogenic.

Residual risk

No carrier test can detect 100% of carriers. There still remains a small risk of being a carrier after a negative test (residual risk). Residual risk values assume a negative family history and are inferred from published carrier frequencies and estimated detection rates based on testing technologies used at Invitae. You can view Invitae's complete Carrier detection rates and residual risks document (containing all carrier genes) online at https://www.invitae.com/carrier-residual-risks/. Additionally, the order-specific information for this report is available to download in the portal (under this order's documents) or can be requested by contacting Invitae Client Services. The complete Carrier detection rates and residual risks document will not be applicable for any genes with specimen-specific limitations in sequencing and/or deletion/duplication coverage. Please see the final bullet point in the Limitations section of this report to view if this specimen had any gene-specific coverage gaps.

Invitae #:

Genes analyzed

This table represents a complete list of genes analyzed for this individual, including the relevant gene transcript(s). If more than one transcript is listed for a single gene, variants were reported using the first transcript listed unless otherwise indicated in the report. An asterisk (*) indicates that this gene has a limitation. Please see the Limitations section for details. Results are negative, unless otherwise indicated in the report.

GENE	TRANSCRIPT	GENE	TRANSCRIPT	GENE	TRANSCRIPT
AAAS	NM_015665.5	AMT	NM_000481.3	BMP1	NM_006129.4;NM_001199.3
ABCA12	NM_173076.2	ANO10*	NM_018075.3	BRIP1	NM_032043.2
ABCA3	NM_001089.2	AP1S1	NM_001283.3	BSND	NM_057176.2
ABCA4	NM_000350.2	AQP2	NM_000486.5	ВТК	NM_000061.2
ABCB11	NM_003742.2	AR*	NM_000044.3	CAD	NM_004341.4
ABCB4	NM_000443.3	ARG1	NM_000045.3	CANT1	NM_138793.3
ABCC2*	NM_000392.4	ARL6	NM_177976.2	CAPN3	NM_000070.2
ABCC8	NM_000352.4	ARSA	NM_000487.5	CASQ2	NM_001232.3
ABCD1	NM_000033.3	ARSB	NM_000046.3	CBS	NM_000071.2
ACAD9	NM_014049.4	ARSE	NM_000047.2	CC2D1A	NM_017721.5
ACADM	NM_000016.5	ARX*	NM_139058.2	CC2D2A	NM_001080522.2
ACADVL	NM_000018.3	ASL	NM_000048.3	CCDC103	NM_213607.2
ACAT1	NM_000019.3	ASNS	NM_133436.3	CCDC39	NM_181426.1
ACOX1	NM_004035.6	ASPA	NM_000049.2	CCDC88C	NM_001080414.3
ACSF3	NM_174917.4	ASS1	NM_000050.4	CD3D	NM_000732.4
ADA	NM_000022.2	ATM*	NM_000051.3	CD3E	NM_000733.3
ADAMTS2	NM_014244.4	ATP6V1B1	NM_001692.3	CD40	NM_001250.5
ADAMTSL4	NM_019032.5	ATP7A	NM_000052.6	CD40LG	NM_000074.2
ADGRG1	NM_005682.6	ATP7B	NM_000053.3	CD59	NM_203330.2
ADGRV1	NM_032119.3	ATP8B1*	NM_005603.4	CDH23	NM_022124.5
AGA	NM_000027.3	ATRX	NM_000489.4	CEP152	NM_014985.3
AGL	NM_000642.2	AVPR2	NM_000054.4	CEP290	NM_025114.3
AGPS	NM_003659.3	BBS1	NM_024649.4	CERKL	NM_001030311.2
AGXT	NM_000030.2	BBS10	NM_024685.3	CFTR*	NM_000492.3
AHI1	NM_017651.4	BBS12	NM_152618.2	CHAT	NM_020549.4
AIPL1*	NM_014336.4	BBS2	NM_031885.3	СНМ	NM_000390.2
AIRE	NM_000383.3	BBS4	NM_033028.4	CHRNE	NM_000080.3
ALDH3A2	NM_000382.2	BBS5	NM_152384.2	CHRNG	NM_005199.4
ALDH7A1	NM_001182.4	BBS7	NM_176824.2	CIITA	NM_000246.3
ALDOB	NM_000035.3	BBS9*	NM_198428.2	CLCN1	NM_000083.2
ALG1	NM_019109.4	BCKDHA	NM_000709.3	CLN3	NM_001042432.1
ALG13	NM_001099922.2	вскрнв	NM_183050.2	CLN5	NM_006493.2
ALG6	NM_013339.3	BCS1L	NM_004328.4	CLN6	NM_017882.2
ALMS1	NM_015120.4	BLM	NM_000057.3	CLN8	NM_018941.3
ALPL	NM_000478.5	BLOC1S3	NM_212550.4	CLRN1	NM_174878.2
AMN*	NM_030943.3	BLOC1S6	NM_012388.3	CNGB3	NM_019098.4

GENE	TRANSCRIPT	GENE	TRANSCRIPT	GENE	TRANSCR
COL11A2*	NM_080680.2	DKC1	NM_001363.4	FANCB	NM_001018
COL17A1	NM_000494.3	DLD	NM_000108.4	FANCC	NM_000136
COL27A1	NM_032888.3	DLL3	NM_016941.3	FANCD2*	NM_033084
COL4A3	NM_000091.4	DMD	NM_004006.2	FANCE	NM_021922
COL4A4	NM_000092.4	DNAH11	NM_001277115.1	FANCG	NM_004629
COL4A5	NM_000495.4	DNAH5	NM_001369.2	FANCI	NM_001113
COL7A1	NM_000094.3	DNAI1	NM_012144.3	FANCL*	NM_018062
COX15	NM_004376.6	DNAI2	NM_023036.4	FBP1	NM_000507
CPS1	NM_001875.4	DNMT3B	NM_006892.3	FBXO7	NM_012179
CPT1A	NM_001876.3	DOK7	NM_173660.4	FH*	NM_000143
CPT2	NM_000098.2	DUOX2*	NM_014080.4	FHL1	NM_001449
CRB1	NM_201253.2	DYNC2H1	NM_001080463.1	FKBP10	NM_021939
CRTAP	NM_006371.4	DYSF	NM_003494.3	FKRP	NM_024301
CTNS	NM_004937.2	EDA	NM_001399.4	FKTN	NM_001079
СТЅА	NM_000308.3	EIF2AK3	NM_004836.6	FMO3	NM_006894.
стѕс	NM_001814.5	EIF2B1	NM_001414.3	FMR1*	NM_002024
CTSD	NM_001909.4	EIF2B2	NM_014239.3	FOXN1	NM_003593
СТЅК	NM_000396.3	EIF2B3	NM_020365.4	FOXRED1	NM_017547.
СҮВА	NM_000101.3	EIF2B4	NM_015636.3	FRAS1	NM_025074.
СҮВВ	NM_000397.3	EIF2B5	NM_003907.2	FREM2	NM_207361
CYP11A1	NM_000781.2	ELP1	NM_003640.3	FUCA1	NM_000147
CYP11B1	NM_000497.3	EMD	NM_000117.2	G6PC	NM_000151
CYP11B2	NM_000498.3	EPG5	NM_020964.2	G6PC3	NM_138387
CYP17A1	NM_000102.3	ERCC2	NM_000400.3	GAA	NM_000152
CYP19A1	NM_031226.2	ERCC6	NM_000124.3	GALC*	NM_000153
CYP1B1	NM_000104.3	ERCC8	NM_000082.3	GALE*	NM_000403
CYP21A2*	NM_000500.7	ESCO2	NM_001017420.2	GALK1	NM_000154
CYP27A1	NM_000784.3	ETFA	NM_000126.3	GALNS	NM_000512.
CYP27B1	NM_000785.3	ETFB	NM_001985.2	GALNT3	NM_004482.
CYP7B1	NM_004820.3	ETFDH	NM_004453.3	GALT	NM_000155.
DBT	NM_001918.3	ETHE1	NM_014297.3	GAMT	NM_000156
DCAF17	NM_025000.3	EVC	NM_153717.2	GATM	NM_001482.
DCLRE1C	NM_001033855.2	EVC2	NM_147127.4	GBA*	NM_001005
DDX11*	NM_030653.3	EXOSC3	NM_016042.3	GBE1	NM_000158
DFNB59	NM_001042702.3	EYS*	NM_001142800.1	GCDH	NM_000159
DGAT1	NM_012079.5	F9	NM_000133.3	GCH1	NM_000161
DGUOK	NM_080916.2	FAH*	NM_000137.2	GDF5	NM_000557
DHCR7	NM_001360.2	FAM161A	NM_001201543.1	GFM1	NM_024996
DHDDS	NM_024887.3	FANCA	NM_000135.2	GHR*	NM_000163

GENE	TRANSCRIPT	GENE	TRANSCRIPT	GENE
GJB1	NM_000166.5	HPS5	NM_181507.1	LRP2
GJB2	NM_004004.5	HPS6	NM_024747.5	LRPPRC
GLA	NM_000169.2	HSD17B10	NM_004493.2	LYST
GLB1	NM_000404.2	HSD17B3	NM_000197.1	MAK
GLDC	NM_000170.2	HSD17B4	NM_000414.3	MAN2B1
GLE1	NM_001003722.1	HSD3B2	NM_000198.3	MANBA
GNE*	NM_001128227.2	HYAL1	NM_153281.1	MCEE
GNPAT	NM_014236.3	HYLS1	NM_145014.2	MCOLN1
GNPTAB	NM_024312.4	IDS*	NM_000202.6	MCPH1
GNPTG	NM_032520.4	IDUA	NM_000203.4	MECP2
GNS	NM_002076.3	IGHMBP2	NM_002180.2	
GORAB	NM_152281.2	ІКВКВ	NM_001556.2	MECR
GRHPR	NM_012203.1	IL2RG	NM_000206.2	MED17
GRIP1	NM_021150.3	IL7R	NM_002185.3	MESP2
GSS	NM_000178.2	INVS	NM_014425.3	MFSD8
GUCY2D	NM_000180.3	ITGA6	NM_000210.3	MID1*
GUSB	NM_000181.3	ITGB3	NM_000212.2	MKKS
HADH	NM_005327.4	ITGB4	NM_001005731.2	MKS1
HADHA	NM_000182.4	IVD	NM_002225.3	MLC1*
HADHB	NM_000183.2	JAK3	NM_000215.3	MLYCD
НАМР	NM_021175.2	KCNJ1	NM_000220.4	MMAA
HAX1	NM_006118.3	KCNJ11	NM_000525.3	MMAB
HBA1*	NM_000558.4	LICAM	NM_000425.4	MMACHC
HBA2	NM_000517.4	LAMA2	NM_000426.3	MMADHC
НВВ	NM_000518.4	LAMA3	NM_000227.4	MOCS1
HCFC1	NM_005334.2	LAMB3	NM_000228.2	MOCS2A
HEXA	NM_000520.4	LAMC2	NM_005562.2	MOCS2B
HEXB	NM_000521.3	LARGE1	NM_004737.4	MPI
HGSNAT	NM_152419.2	LCA5	NM_181714.3	MPL
HJV	NM_213653.3	LDLR	NM_000527.4	MPV17
HLCS	NM_2000411.6	LDLRAP1	NM_015627.2	MRE11
HMGCL	NM_000191.2	LHX3	NM_014564.4	MTHFR*
HMOX1	NM_002133.2	LIFR*	NM_002310.5	MTM1
HOGAI	NM_002133.2	LIG4	NM_002312.3	MTR
HPD	NM_002150.2	LIPA	NM_000235.3	MTRR
HPRT1	NM_000194.2	LMBRD1	NM_018368.3	MTTP
HPS1	NM_000194.2	LOXHD1	NM_144612.6	MUSK
HPS3	NM_032383.4	LPL	NM_000237.2	MUT
HPS4	NM_032383.4 NM_022081.5	LRAT	NM_004744.4	MVK
11734	INIVI_022001.3	LKAI	INIVI_004744.4	MYO15A

GENE	TRANSCRIPT	GENE	TRANSCRIPT	GENE	TRANSCRIPT
MYO7A	NM_000260.3	РССВ	NM_000532.4	PRCD	NM_001077620.2
NAGA	NM_000262.2	PCDH15	NM_033056.3	PRDM5	NM_018699.3
NAGLU	NM_000263.3	PCNT	NM_006031.5	PRF1	NM_001083116.1
NAGS	NM_153006.2	PDHA1	NM_000284.3	PROP1	NM_006261.4
NBN	NM_002485.4	PDHB	NM_000925.3	PRPS1	NM_002764.3
NCF2	NM_000433.3	PEPD	NM_000285.3	PSAP	NM_002778.3
NDRG1	NM_006096.3	PET100	NM_001171155.1	PTPRC*	NM_002838.4
NDUFAF2	NM_174889.4	PEX1*	NM_000466.2	PTS	NM_000317.2
NDUFAF5	NM_024120.4	PEX10	NM_153818.1	PUS1	NM_025215.5
NDUFS4	NM_002495.3	PEX12	NM_000286.2	PYGM	NM_005609.3
NDUFS6	NM_004553.4	PEX13	NM_002618.3	QDPR	NM_000320.2
NDUFS7	NM_024407.4	PEX16	NM_004813.2	RAB23	NM_183227.2
NDUFV1	NM_007103.3	PEX2	NM_000318.2	RAG1	NM_000448.2
NEB*	NM_001271208.1	PEX26	NM_017929.5	RAG2	NM_000536.3
NEU1	NM_000434.3	PEX5	NM_001131025.1	RAPSN	NM_005055.4
NGLY1	NM_018297.3	PEX6	NM_000287.3	RARS2	NM_020320.3
NPC1	NM_000271.4	PEX7	NM_000288.3	RDH12	NM_152443.2
NPC2	NM_006432.3	PFKM	NM_000289.5	RLBP1	NM_000326.4
NPHP1	NM_000272.3	PGM3	NM_001199917.1	RMRP	NR_003051.3
NPHS1	NM_004646.3	PHGDH	NM_006623.3	RNASEH2A	NM_006397.2
NPHS2	NM_014625.3	РНКВ	NM_000293.2;NM_00103183	RNASEH2B	NM_024570.3
NR0B1	NM_000475.4		5.2	RNASEH2C	NM_032193.3
NR2E3	NM_014249.3	PHKG2	NM_000294.2	RP2	NM_006915.2
NSMCE3	NM_138704.3	РНҮН	NM_006214.3	RPE65	NM_000329.2
NTRK1	NM_001012331.1	PIGN	NM_176787.4	RPGRIP1L	NM_015272.2
OAT*	NM_000274.3	PKHD1*	NM_138694.3	RS1	NM_000330.3
OCA2	NM_000275.2	PLA2G6	NM_003560.2	RTEL1	NM_001283009.1
OCRL	NM_000276.3	PLEKHG5	NM_020631.4	RXYLT1	NM_014254.2
OPA3	NM_025136.3	PLOD1	NM_000302.3	RYR1	NM_000540.2
OSTM1	NM_014028.3	PLP1	NM_000533.4	SACS	NM_014363.5
OTC	NM_000531.5	PMM2	NM_000303.2	SAMD9	NM_017654.3
OTOA*	NM_144672.3	PNPO	NM_018129.3	SAMHD1	NM_015474.3
OTOF	NM_194248.2;NM_194323.2	POLG	NM_002693.2	SCO2	NM_005138.2
P3H1	NM_022356.3	POLH	NM_006502.2	SEC23B	NM_006363.4
РАН	NM_000277.1	POMGNT1	NM_017739.3	SEPSECS	NM_016955.3
PANK2	NM_153638.2	POMT1	NM_007171.3	SGCA	NM_000023.2
PC	NM_000920.3	POMT2	NM_013382.5	SGCB	NM_000232.4
PCBD1	NM_000281.3	POR	NM_000941.2	SGCD	NM_000337.5
PCCA	NM_000282.3	POU1F1	NM_000306.3	SGCG	NM_000231.2
		PPT1	NM_000310.3		

GENE	TRANSCRIPT	GENE	TRANSCRIPT	GENE	TRANSCRIPT
SGSH	NM_000199.3	SURF1	NM_003172.3	USH1C*	NM_005709.3
SKIV2L	NM_006929.4	SYNE4	NM_001039876.2	USH2A	NM_206933.2
SLC12A1	NM_000338.2	TANGO2	NM_152906.6	VDR	NM_001017535.1
SLC12A3	NM_000339.2	TAT	NM_000353.2	VLDLR	NM_003383.4
SLC12A6	NM_133647.1	TAZ	NM_000116.4	VPS11	NM_021729.5
SLC17A5	NM_012434.4	TBCD	NM_005993.4	VPS13A*	NM_033305.2
SLC19A2	NM_006996.2	TBCE*	NM_003193.4	VPS13B	NM_017890.4
SLC19A3	NM_025243.3	TCIRG1	NM_006019.3	VPS45	NM_007259.4
SLC1A4	NM_003038.4	TCN2	NM_000355.3	VPS53*	NM_001128159.2
SLC22A5	NM_003060.3	TECPR2	NM_014844.3	VRK1	NM_003384.2
SLC25A13	NM_014251.2	TERT	NM_198253.2	VSX2	NM_182894.2
SLC25A15	NM_014252.3	TF	NM_001063.3	WAS	NM_000377.2
SLC25A20	NM_000387.5	TFR2	NM_003227.3	WISP3	NM_003880.3
SLC26A2	NM_000112.3	TG*	NM_003235.4	WNT10A	NM_025216.2
SLC26A3	NM_000111.2	TGM1	NM_000359.2	WRN*	NM_000553.4
SLC26A4	NM_000441.1	тн	NM_199292.2	XPA	NM_000380.3
SLC27A4	NM_005094.3	TK2	NM_004614.4	XPC	NM_004628.4
SLC35A3	NM_012243.2	TMC1	NM_138691.2	ZBTB24	NM_014797.2
SLC37A4	NM_001164277.1	TMEM216	NM_001173990.2	ZFYVE26	NM_015346.3
SLC38A8	NM_001080442.2	TMEM67	NM_153704.5	ZNF469	NM_001127464.2
SLC39A4	NM_130849.3	TMPRSS3	NM_024022.2		
SLC45A2	NM_016180.4	TPO	NM_000547.5		
SLC4A11	NM_032034.3	TPP1	NM_000391.3		
SLC5A5	NM_000453.2	TREX1	NM_033629.4		
SLC6A8	NM_005629.3	TRIM32	NM_012210.3		
SLC7A7	NM_001126106.2	TRIM37	NM_015294.4		
SMARCAL1	NM_014140.3	TRMU	NM_018006.4		
SMN1*	NM_000344.3	TSEN54	NM_207346.2		
SMPD1	NM_000543.4	TSFM*	NM_001172696.1		
SNAP29	NM_004782.3	ТЅНВ	NM_000549.4		
SPG11	NM_025137.3	TSHR	NM_000369.2		
SPR	NM_003124.4	TTC37	NM_014639.3		
SRD5A2	NM_000348.3	ТТРА	NM_000370.3		
ST3GAL5	NM_003896.3	TULP1	NM_003322.4		
STAR	NM_000349.2	ТҮМР	NM_001953.4		
STX11	NM_003764.3	TYR*	NM_000372.4		
STXBP2	NM_006949.3	TYRP1	NM_000550.2		
SUMF1	NM_182760.3	UBR1	NM_174916.2		
SUOX	NM_000456.2	UNC13D	NM_199242.2		

INVITAE CARRIER SCREEN RESULTS

Patient name: CB 569 DOB: Invitae #:

Methods

■ Genomic DNA obtained from the submitted sample is enriched for targeted regions using a hybridization-based protocol, and sequenced using Illumina technology. Unless otherwise indicated, all targeted regions are sequenced with ≥50x depth or are supplemented with additional analysis. Reads are aligned to a reference sequence (GRCh37), and sequence changes are identified and interpreted in the context of a single clinically relevant transcript, indicated in the Genes Analyzed table. Enrichment and analysis focus on the coding sequence of the indicated transcripts, 20bp of flanking intronic sequence, and other specific genomic regions demonstrated to be causative of disease at the time of assay design. Promoters, untranslated regions, and other non-coding regions are not otherwise interrogated. Exonic deletions and duplications are called using an in-house algorithm that determines copy number at each target by comparing the read depth for each target in the proband sequence with both mean read-depth and read-depth distribution, obtained from a set of clinical samples. Markers across the X and Y chromosomes are analyzed for quality control purposes and may detect deviations from the expected sex chromosome complement. Such deviations may be included in the report in accordance with internal guidelines. Invitae utilizes a classification methodology to identify next-generation sequencing (NGS)-detected variants that require orthogonal confirmation (Lincoln, et al. J Mol Diagn. 2019 Mar;21(2):318-329). Confirmation of the presence and location of reportable variants is performed as needed based on stringent criteria using one of several validated orthogonal approaches (PubMed ID 30610921). Sequencing is performed by Invitae Corporation (1400 16th Street, San Francisco, CA 94103, #05D2040778).

The following additional analyses are performed if relevant to the requisition. For GBA the reference genome has been modified to mask the sites of polymorphic paralog sequence variants (PSVs) in both the gene and pseudogene. For CYP21A2 and GBA, if one or more reportable variants, gene conversion, or fusion event is identified via our NGS pipeline (see Limitations), these variants are confirmed by PacBio sequencing of an amplicon generated by long-range PCR and subsequent short-range PCR. In some cases, it may not be possible to disambiguate between the gene and pseudogene. For GJB2, the reportable range includes large upstream deletions overlapping GJB6. For HBA1/2, the reference genome has been modified to force some sequencing reads derived from HBA1 to align to HBA2, and variant calling algorithms are modified to support an expectation of 4 alleles in these regions. HBA1/2 copy number calling is performed by a custom hypothesis testing algorithm which generates diplotype calls. If sequence data for a sample does not support a unique high confidence match from among hypotheses tested, that sample is flagged for manual review. Copy number variation is only reported for coding sequence of HBA1 and HBA2 and the HS-40 region. This assay does not distinguish among the $-\alpha$ 3.7 subtypes, and all $-\alpha$ 3.7 variants are called as HBA1 deletions. This assay may not detect overlapping copy gain and copy loss events when the breakpoints of those events are similar. For FMR1, cytosine-guanine-guanine (CGG) triplet repeats in the 5' untranslated region (5' UTR) of the FMR1 gene are detected by triplet repeat-primed PCR (RP-PCR) with fluorescently labeled primers followed by capillary electrophoresis. Reference ranges: Normal: <45 CGG repeats, intermediate: 45-54 CGG repeats, premutation: 55-200 CGG repeats, full mutation: >200 CGG repeats. For alleles with 55-90 triplet repeats, the region surrounding the FMR1 repeat is amplified by PCR. The PCR amplicons are then processed through PacBio SMRTBell library prep and sequenced using PacBio long read technology. The number of AGG interruptions within the 55-90 triplet repeat is read directly from the resulting DNA sequences.

- This report only includes variants that have a clinically significant association with the conditions tested as of the report date. Variants of uncertain significance, benign variants, and likely benign variants are not included in this report. However, if additional evidence becomes available to indicate that the clinical significance of a variant has changed, Invitae may update this report and provide notification.
- A PMID is a unique identifier referring to a published, scientific paper. Search by PMID at http://www.ncbi.nlm.nih.gov/pubmed.
- An rsID is a unique identifier referring to a single genomic position, and is used to associate population frequency information with sequence changes at that position. Reported population frequencies are derived from a number of public sites that aggregate data from large-scale population sequencing projects, including ExAC (http://exac.broadinstitute.org), gnomAD (http://gnomad.broadinstitute.org), and dbSNP (http://ncbi.nlm.nih.gov/SNP).

Disclaimer

DNA studies do not constitute a definitive test for the selected condition(s) in all individuals. It should be realized that there are possible sources of error. Errors can result from trace contamination, rare technical errors, rare genetic variants that interfere with analysis, recent scientific developments, and alternative classification systems. This test should be one of many aspects used by the healthcare provider to help with a diagnosis and treatment plan, but it is not a diagnosis itself. This test was developed and its performance characteristics determined by Invitae. It has not been cleared or approved by

Invitae #:

the FDA. The laboratory is regulated under the Clinical Laboratory Improvement Act (CLIA) as qualified to perform high-complexity clinical tests (CLIA ID: 05D2040778). This test is used for clinical purposes. It should not be regarded as investigational or for research.

Limitations

- Based on validation study results, this assay achieves >99% analytical sensitivity and specificity for single nucleotide variants, insertions and deletions <15bp in length, and exon-level deletions and duplications. Invitae's methods also detect insertions and deletions larger than 15bp but smaller than a full exon but sensitivity for these may be marginally reduced. Invitae's deletion/duplication analysis determines copy number at a single exon resolution at virtually all targeted exons. However, in rare situations, single-exon copy number events may not be analyzed due to inherent sequence properties or isolated reduction in data quality. Certain types of variants, such as structural rearrangements (e.g. inversions, gene conversion events, translocations, etc.) or variants embedded in sequence with complex architecture (e.g. short tandem repeats or segmental duplications), may not be detected. Additionally, it may not be possible to fully resolve certain details about variants, such as mosaicism, phasing, or mapping ambiguity. Unless explicitly guaranteed, sequence changes in the promoter, non-coding exons, and other non-coding regions are not covered by this assay. Please consult the test definition on our website for details regarding regions or types of variants that are covered or excluded for this test. This report reflects the analysis of an extracted genomic DNA sample. While this test is intended to reflect the analysis of extracted genomic DNA from a referred patient, in very rare cases the analyzed DNA may not represent that individual's constitutional genome, such as in the case of a circulating hematolymphoid neoplasm, bone marrow transplant, blood transfusion, chimerism, culture artifact or maternal cell contamination.</p>
- FMR1 testing is limited to repeat expansion analysis only, and does not include coding region sequence, CNV analysis or FMR1 methylation. Sizing accuracy is expected to be +/-1 for CGG repeat alleles less than or equal to 90 repeat units and +/-3 for CGG repeat alleles greater than 90 repeat units. If the two CGG repeat counts listed are the same, it most likely indicates homozygosity; however, in very rare scenarios it could be the result of biological or technical reasons including, but not limited to, sex chromosome anomalies, allelic dropout, or sample submission errors. This test is not intended to diagnose sex chromosome aneuploidy, although evidence of such incidental findings may be present in the analysis and reported. The number of AGG interruptions is only determined for females ≥12 years of age with triplet repeat sizes of 55-90. Due to somatic mosaicism and/or repeat instability of expanded alleles, repeat size identified in DNA isolated from peripheral blood, buccal cells, or saliva may not reflect the repeat size in untested tissues (e.g. brain, gonads). In addition, a negative result does not definitively rule out the presence of an expansion in the mosaic state, as the current test is not validated to detect low-level mosaic variants. This report reflects the analysis of an extracted genomic DNA sample. While this test is intended to reflect the analysis of extracted genomic DNA from a referred patient, in very rare cases the analyzed DNA may not represent that individual's constitutional genome, such as in the case of a circulating hematolymphoid neoplasm, bone marrow transplant, blood transfusion, chimerism, culture artifact or maternal cell contamination. DUOX2: Deletion/duplication and sequencing analysis is not offered for exons 6-7. PTPRC: Sequencing analysis is not offered for exons 3, 15. ABCC2: Deletion/duplication analysis is not offered for exons 24-25. OTOA: Deletion/duplication and sequencing analysis is not offered for exons 20-28. TBCE: Sequencing analysis for exons 2 includes only cds +/- 10 bp. GALE: Sequencing analysis for exons 10 includes only cds +/- 5 bp. DDX11: NM_030653.3:c.1763-1G>C variant only. PKHD1: Deletion/duplication analysis is not offered for exon 13. SMN1: Systematic exon numbering is used for all genes, including SMN1, and for this reason the exon typically referred to as exon 7 in the literature (PMID: 8838816) is referred to as exon 8 in this report. This assay unambiguously detects SMN1 exon 8 copy number. The presence of the g.27134T>G variant (also known as c.*3+80T>G) is reported if SMN1 copy number = 2. SMN1 or SMN2: NM_000344.3:c.*3+80T>G variant only. VPS13A: Deletion/duplication analysis is not offered for exons 2-3, 27-28. GNE: Sequencing analysis for exons 8 includes only cds +/- 10 bp. NEB: Deletion/duplication analysis is not offered for exons 82-105. NEB variants in this region with no evidence towards pathogenicity are not included in this report, but are available upon request. BBS9: Deletion/duplication analysis is not offered for exon 4. WRN: Deletion/duplication analysis is not offered for exons 10-11. Sequencing analysis for exons 8, 10-11 includes only cds +/- 10 bp. OAT: Deletion/duplication analysis is not offered for exon 2. GHR: Deletion/duplication and sequencing analysis is not offered for exon 3. CFTR: Sequencing analysis for exons 7 includes only cds +/- 10 bp. EYS: Sequencing analysis for exons 30 includes only cds +/- 0 bp. FH: Sequencing analysis for exons 9 includes only cds +/- 10 bp. ANO10: Sequencing analysis for exons 8 includes only cds +/- 0 bp. ATP8B1: Sequencing analysis for exons 19 includes only cds +/- 10 bp. FANCD2: Deletion/ duplication analysis is not offered for exons 14-17, 22 and sequencing analysis is not offered for exons 15-17. Sequencing analysis for exons 6, 14, 18, 20, 23, 25, 34 includes only cds +/- 10 bp. ARX: Analysis is validated to detect polyalanine expansions but sensitivity may be reduced. COL11A2: Deletion/duplication analysis is not offered for exon 36. TSFM: Sequencing analysis is not offered for exon 5. VPS53: Sequencing analysis for exons 14 includes only cds +/- 5 bp. HBA1/2: This assay is designed to detect deletions and duplications of HBA1 and/or HBA2, resulting from the -alpha20.5, --MED, --SEA, --FIL/--THAI, -alpha3.7, -alpha4.2, anti3.7 and anti4.2. Sensitivity to detect other copy number variants may be reduced. Detection of overlapping deletion and duplication events will be limited to combinations of events with significantly differing boundaries. In addition, deletion of the enhancer element HS-40 and the sequence variant, Constant Spring (NM_000517.4:c.427T>C), can be

Invitae #:

identified by this assay. MTHFR: The NM_005957.4:c.665C>T (p.Ala222Val) (aka 677C>T) and c.1286A>C (p.Glu429Ala) (aka 1298A>C) variants are not reported in our primary report. GBA: c.84dupG (p.Leu29Alafs*18), c.115+1G>A (Splice donor), c.222_224delTAC (p.Thr75del), c.475C>T (p.Arg159Trp), c.595_596delCT (p.Leu199Aspfs*62), c.680A>G (p.Asn227Ser), c.721G>A (p.Gly241Arg), c.754T>A (p.Phe2521le), c.1226A>G (p.Asn409Ser), c.1246G>A (p.Gly416Ser), c.1263_1317del (p.Leu422Profs*4), c.1297G>T (p.Val433Leu), c.1342G>C (p.Asp448His), c.1343A>T (p.Asp448Val), c.1448T>C (p.Leu483Pro), c.1504C>T (p.Arg502Cys), c.1505G>A (p.Arg502His), c.1603C>T (p.Arg535Cys), c.1604G>A (p.Arg535His) variants only. Rarely, sensitivity to detect these variants may be reduced. When sensitivity is reduced, zygosity may be reported as "unknown". MID1: Sequencing analysis for exons 3 includes only cds +/- 0 bp. CYP21A2: Analysis includes the most common variants (c.92C>T(p.Pro31Leu), c.293-13C>G (intronic), c.332_339delGAGACTAC (p.Gly111Valfs*21), c.518T>A (p.Ile173Asn), c.710T>A (p.Ile237Asn), c.713T>A (p.Val238Glu), c.719T>A (p.Met240Lys), c.844G>T (p.Val282Leu), c.923dupT (p.Leu308Phefs*6), c.955C>T (p.Gln319*), c.1069C>T(p.Arg357Trp), c.1360C>T (p.Pro454Ser) and the 30Kb deletion) as well as select rare HGMD variants only (list available upon request). Full gene duplications are reported only in the presence of a pathogenic variant(s). When a duplication and a pathogenic variant(s) is identified, phase (cis/trans) cannot be determined. Full gene deletion analysis is not offered. Sensitivity to detect these variants, if they result from complex gene conversion/fusion events, may be reduced. AIPL1: Sequencing analysis for exons 2 includes only cds +/- 10 bp. LIFR: Sequencing analysis for exons 3 includes only cds +/- 5 bp. AMN: Deletion/duplication analysis is not offered for exon 1. PEX1: Sequencing analysis for exons 16 includes only cds +/- 0 bp. USH1C: Deletion/duplication analysis is not offered for exons 5-6. TYR: Deletion/duplication and sequencing analysis is not offered for exon 5. AR: CAG repeat numbers are not determined. TG: Deletion/duplication analysis is not offered for exon 18. Sequencing analysis for exons 44 includes only cds +/- 0 bp. FANCL: Sequencing analysis for exons 4, 10 includes only cds +/- 10 bp. IDS: Detection of complex rearrangements not offered (PMID: 7633410, 20301451). MLC1: Sequencing analysis for exons 11 includes only cds +/- 10 bp. ATM: Sequencing analysis for exons 6, 24, 43 includes only cds +/- 10 bp. FAH: Deletion/duplication analysis is not offered for exon 14. GALC: Deletion/duplication analysis is not offered for exon 6.

This report has been reviewed and approved by:

Katimah Nalila

Fatimah Nahhas-Alwan, PhD, FACMG Clinical Molecular Geneticist

Cb, 569	DOB:	Patient Report	labcorp
Patient ID:	Age:	Account Number: 34334785	
Specimen ID:	Sex: Male	Ordering Physician: D PRESCOTT	
Date Collected: 02/28/2023	Date Received: 03/01/2023	Date Reported: 03/29/2023	Fasting: No

Ordered Items: Inheritest(R)500 PLUS Panel; Chromosome, Blood, Routine; Count 15-20 cells, 2 Karyotype; Chromosome Blood Routine 88230

Inheritest(R)500 PLUS Panel

Test	Current Result and Flag	Previous Result and Date	Units	Reference Interval			
Result ^{A, 01}							
	PDF report to be sent separately **Effective March 20, 2023 630049 Inheritest(R)500 PLUS Panel** will be made non-orderable. Labcorp will offer order code 481893 Inheritest 500 PLUS Panel. For further information, please contact your local Labcorp Representative.						
PDF ⁰¹							
Patient Gender ⁰¹	Male						

Chromosome, Blood, Routine

Test	Current Result and Flag	Previous Result and Date	Units	Reference Interva
Specimen Type ⁰²	Comment:			
	BLOOD			
Cells Counted ⁰²	20			
Cells Analyzed ⁰²	20			
Cells Karyotyped ⁰²	2			
GTG Band Resolution Achieved ⁰²	500			
Cytogenetic Result ⁰²	Comment:			
, 0	46, XY			
	revealed a MALE karyotype wi banding pattern in all cells This result does not ex rearrangements below the rese congenital anomalies due to o Technical Component-Proce 34D1008914, 1904 TW Alexander 27709. Medical Director, An	observed. Acclude the possibility of sub olution of cytogenetics or other etiologies. essing performed by LabCorp C r Dr, Research Triangle Park, jen Chenn, M.D., Ph.D. mosome analysis performed at IA# 34D2180949. 20 Grouse Win	ELIA NC	
Director Review: ⁰²	Comment: Kaitlin C. Lenhart, PhD, FACI	1G		
PDF				

labcorp

Date Created and Stored 03/29/23 0820 ET Final Report Page 1 of 2

Date Collected: 02/28/2023

This document contains private and confidential health information protected by state and federal law. If you have received this document in error please call 800-282-7300

Cb, 569	DOB:	Patient Report	labcorp
Patient ID:	Age:	Account Number: 34334785	
Specimen ID:	Sex: Male	Ordering Physician: D PRESCOTT	

Disclaimer

The Previous Result is listed for the most recent test performed by Labcorp in the past 5 years where there is sufficient patient demographic data to match the result to the patient. Results from certain tests are excluded from the Previous Result display.

Icon Legend

🔺 Out of Reference Range 🛛 📕 Critical or Alert

Comments

A: This test was developed and its performance characteristics determined by Labcorp. It has not been cleared or approved by the Food and Drug Administration.

Performing Labs

01: MNEGA - Medical Neurogenetic LLC 5424 Glenridge Dr NE, Atlanta, GA, 30342-1342 Dir: Geraldine McDowell, PhD 02: YU - Labcorp RTP 1904 TW Alexander Drive Ste C, RTP, NC, 27709-0153 Dir: Anjen Chenn, MDPhD For Inquiries, the physician may contact Branch: 800-321-3862 Lab: 800-282-7300

Cb, 569 Phone: Date of Birth:

Patient Details

Age: Sex: **Male** Patient ID: Alternate Patient ID: Physician Details D PRESCOTT Cryo Biology 4845 Knightsbridge Blvd., Ste 200, Columbus, OH, 43214

Phone: **614-451-4375** Account Number: **34334785** Physician ID: **PRESCOTT,D** NPI: **1285675868** **Specimen Details**

Date Collected: **02/28/2023 0900 Local** Date Received: **03/01/2023 0000 ET** Date Entered: **03/01/2023 2131 ET** Date Reported: **03/29/2023 0809 ET**

Date Created and Stored 03/29/23 0820 ET Final Report Page 2 of 2

GENETICS				Inheritest® 500 PL
LabCorp Specialty Testing Group	Container ID:			486 genes
Control ID:		Acct #: 34334785	Ph	one:
CB, 569				
	Specimen Details		Physician De	etails
Patient Details	•	02/28/2023 12:00 (Local)	•	e tails PRESCOTT, D
Patient Details	Date Collected:		•	
·	Date Collected: Date Received:	02/28/2023 12:00 (Local)	Ordering: Referring:	

Lab ID:

Genetic Counselor:

MNEGA

Specimen Type: Blood

Ethnicity: Not provided Indication: Carrier screening

SUMMARY: NEGATIVE

NEGATIVE RESULTS

DISORDER (GENE)	RESULTS	INTERPRETATION
Cystic fibrosis (<i>CFTR</i>) NMID: NM_000492	NEGATIVE	This result reduces, but does not eliminate the risk to be a carrier.
		Risk : NOT at an increased risk for an affected pregnancy.
Spinal muscular atrophy (S <i>MN1</i>) NMID: NM_000344	NEGATIVE 2 or 3 copies of <i>SMN1</i> ; negative for c.*3+80T>G SNP	This result reduces, but does not eliminate the risk to be a carrier. For ethnic-specific risk reduction see Methods/Limitations.
		Risk: NOT at an increased risk for an affected pregnancy.
ALL OTHER DISORDERS	NEGATIVE	This result reduces, but does not eliminate the risk to be a carrier.
		Risk: This individual is NOT at an increased risk for having a pregnancy that is affected with one of the other disorders covered by this test. For partner's gene-specific risks, visit www.integratedgenetics.com.

Genetic counseling is recommended to discuss the potential clinical and/or reproductive implications of positive results, as well as recommendations for testing family members and, when applicable, this individual's partner. Genetic counseling services are available. To access Integrated Genetics Genetic Counselors please visit <u>www.integratedgenetics.com/genetic-counseling</u> or call (855) GC-CALLS (855-422-2557).

ADDITIONAL CLINICAL INFORMATION

The individual is NOT at an increased risk for having a pregnancy that is affected with one of the disorders covered by this test. For partner's gene-specific risk reductions, visit www.integratedgenetics.com.

			Inheritest® 500 PLUS
LabCorp Specialty Testing Group			Specimen ID:
Patient: CB, 569			Container ID:
DOB:	Patient ID:	Control ID:	Date Collected: 02/28/2023

COMMENTS

This interpretation is based on the clinical information provided and the current understanding of the molecular genetics of the disorder(s) tested. References and additional information about the disorders tested are available at www.integratedgenetics.com.

The standard of care for Tay-Sachs disease carrier detection in all ethnic groups is enzyme (hexosaminidase A) analysis. For maximum sensitivity and specificity, enzyme analysis should be performed in addition to DNA variant analysis (Schneider, PMID:19876898). If Tay-Sachs enzyme analysis was ordered, results are reported separately.

The standard of care for determining carrier status for sickle cell disease and other hemoglobinopathies is to combine information from clinical assessment, complete blood count, hemoglobin electrophoresis, and DNA testing (Traeger-Synodinos, PMID:25052315). If hemoglobin electrophoresis was ordered, results are reported separately.

METHODS/LIMITATIONS

Single Nucleotide Polymorphism and Small Indel Sequencing Assessment: Genomic regions of interest are selected using a custom capture reagent for target enrichment (Twist Bioscience) and sequenced via the Illumina[®] next generation sequencing platform. Sequencing reads are aligned with the human genome reference GRCh37/hg19 build. Regions of interest include all exons and intron/exon junctions (+/- 20 nucleotides) for each gene analyzed. A minimum of 99% of bases are covered at >15X. Analytical sensitivity is estimated to be >99% for single nucleotide variants, >97% for insertions/deletions less than six base pairs, and >95% for insertions/deletions between six and fifteen base pairs.

Copy Number Variant Assessment: Next Generation Sequencing is performed and the data are assessed with Illumina's DRAGEN (Dynamic Read Analysis for GENomics) Bio-IT Platform. Genes listed in ClinVar with pathogenic deletions less than 10 exons in size are padded with additional intronic probes to allow single exon resolution CNV detection (List based on ClinVar Deletion Database: January 2019 release; see list below). For other genes, large deletions (>10 exons) can be detected. The resolution of this analysis can vary depending on region-specific features. Analytical sensitivity is estimated to be >95%. Padded genes: *ABCA12, ABCD1, ACADM, ACOX1, ADAMTS2, ADGRV1, AGL, AGPAT2, AGXT, AHI1, AIRE, ALDOB, ALMS1, AP3B1, ARL6, ARSA, ARSB, ATM, ATP7A, ATRX, BBS1, BBS2, BBS4, BBS5, BBS7, BBS9, BCKDHB, BLM, BRIP1, CAPN3, CBS, CDH23, CFTR, CLCN5, CLN3, CLN5, CLN8, CNTNAP2, COL4A5, CP, CP11A, CTNS, CYBB, DBT, DCLRE1C, DHCR7, DMD, DOCK8, DOK7, DYSF, EIF2B5, ELP1, EMD, ERCC4, ETHE1, EYS, FA2H, FAM126A, FANCA, FANCC, FANCL2, FANCI, FKTN, GAA, GALC, GALNS, GALT, GBE1, GLDC, GNE, GNPTAB, GUSB, HBB, HEXA, HEXB, HINT1, HIV, HPD, HSD17B4, IDS, IF140, IL7R, ITPA, KCTD7, L1CAM, LAMA2, LAMP2, MCOLN1, MEGF8, MKKS, MKS1, MLC1, MMAB, MTM1, NBN, NCF2, NDUFAF2, NDUF56, NEB, NPHP1, NROB1, NTRK1, OAT, OCRL, OTC, PAH, PANK2, PCCA, PCDH15, PDHX, PEX1, PEX6, PHKA1, PHKA2, PHKB, PKHD1, PLA2G6, PMM2, POLH, POMGNT1, RAPSN, RDH12, RPGRIP1, RPS6KA3, SGCD, SGCG, SLC25A20, SLC26A4, SLC2A10, SLC35A3, SLC7A7, SPG11, STX11, SYNE4, TAZ, TMEM231, TMEM237, TMEM38B, TMEM70, TRIM32, USH2A, VLDIR, VPS13B, VRK1, WRN.*

Alpha thalassemia: Variants included in the analysis of the alpha-globin (*HBA*) gene cluster are the Constant Spring non-deletion variant and the following deletions: -alpha3.7, -alpha4.2, --alpha20.5, --SEA, --FIL, --THAI, --MED, and the HS-40 regulatory region. This analysis does not detect other variants in the alpha-globin genes and may not detect the co-occurrence of a deletion and a duplication. This assay is unable to distinguish between the --FIL and the --THAI deletions. Analytical sensitivity is estimated to be >99% for the targeted variants.

Congenital Adrenal Hyperplasia: This analysis will detect most large rearrangements/deletions/duplications within the *CYP21A2* gene, as well as the presence of seven of the most common pathogenic variants in the gene: 1) c.518T>A (p.Ile173Asn), Chr6:32007203 (GRCh37); 2) c.713T>A (p.Val238Glu); Chr6:32007587 (GRCh37); 3) c.719T>A (p.Met240Lys); Chr6:32007593 (GRCh37); 4) c.923dup (p.Leu308Phefs); Chr6:32007966 (GRCh37); 5) c.293-13C/A>G; Chr6:32006858 (GRCh37); 6) c.332_339delGAGACTAC (p.Gly111Valfs); Chr6:32006910-32006917 (GRCh37) 7) c.-113G>A; Chr6:32006087 (GRCh37). Other point mutations and small indels and reciprocal changes between *CYP21A2* and *CYP21A1P* are not detected by this analysis. The analytical sensitivity of this assay is estimated to be >99%.

Spinal Muscular Atrophy: This analysis will detect the copy number of exon 7 of the *SMN1* gene. When no copies of *SMN1* exon 7 are detected, *SMN2* exon 7 copy number is assessed and reported. This test is unable to differentiate between two copies of the *SMN1* gene on one allele (in cis) versus two copies of the gene on different alleles (in trans). When two copies of *SMN1* exon 7 are detected, the NGS data are assessed for the presence of the c.*3+80T>G "silent carrier" variant. This analysis does not test for any other variants that may be present in other regions of the *SMN1* gene. Therefore, normal results reduce, but do not eliminate the risk of this patient being a carrier of SMA. Post-test carrier risk reductions for individuals with no family history are shown in the table below.

Reported by: Lei Wang, PhD

Patient ID: Control ID:

SMA risk reductions for individuals with no family history Post-test risk of being a carrier with 2 copies** Disorder (Gene) Population **NEGATIVE** for the Post-test risk of being Detection rate **Pre-test carrier POSITIVE for the** c.*3+80T>G SNP (Copy number + risk c.*3+80T>G SNP Reference a carrier with 3 copies SNP) sequence Spinal African American 90.3% 1 in 72 1 in 34 1 in 375 1 in 4200 muscular Ashkenazi Jewish 92.8% 1 in 67 High risk 1 in 918 1 in 5400 atrophy Asian 93.6% 1 in 59 High risk 1 in 907 1 in 5600 (SMN1) Caucasian 95.0% 1 in 47 1 in 29 1 in 921 1 in 5600 NM_000344 Hispanic 92.6% 1 in 68 1 in 140 1 in 906 1 in 5400 Mixed or other ethnic For counseling purposes, consider using the ethnic background with the most conservative risk estimates. backgrounds

** includes carriers who are silent carriers (2+0) and carriers with a pathogenic variant not detected in this assay

^aFeng, PMID 28125085; Luo, PMID 23788250; Sugarman, PMID 21811307

tegrated

LabCorp Specialty Testing Group Patient: CB, 569

DOB:

Reported Variants: Pathogenic and likely pathogenic variants are reported. Variants in GJB2, GJB6, COL4A3, and OPA3 that act in a dominant fashion are not reported. NEB variants occurring in exons 82-105 and SEPN1 variants occurring in exon 1 may not be reliably detected by this analysis and are not reported. Nondeletion variants are specified using the numbering and nomenclature recommended by the Human Genome Variation Society (HGVS, http://www.hgvs.org/). Variants of uncertain significance, likely benign, and benign variants are not reported. Variant classification is consistent with ACMG standards and guidelines (Richards, PMID:25741868). Detailed variant classification information is available upon request.

Limitations: Technologies used do not detect germline mosaicism and do not rule out the presence of large chromosomal aberrations, including rearrangements, variants in regions or genes not included in this test, or possible inter/intragenic interactions between variants. Variant classification and/or interpretation may change over time if more information becomes available. False positive or negative results may occur for reasons that include: rare genetic variants, sex chromosome abnormalities, pseudogene interference, blood transfusions, bone marrow transplantation, somatic or tissue-specific mosaicism, mislabeled samples, or erroneous representation of family relationships.

Specimen ID:

Container ID:

Date Collected: 02/28/2023

Integrated GENETICS			Inheritest® 500 PL
LabCorp Specialty Testing Group			Specimen ID:
Patient: CB, 569			Container ID:
DOB:	Patient ID:	Control ID:	Date Collected: 02/28/2023
DISORDERS TESTED			
	e deficiency (2 genes). Autosomal re	cessive: MCCC1, MCCC2.	
	I recessive: CCDC8, CUL7, OBSL1.		
Abetalipoproteinemia (1 gene). Au			
	es). Autosomal recessive: LARS, NBA	S, TRMU.	
Adenosine deaminase deficiency	(1 gene). Autosomal recessive: ADA.		
Aicardi-Goutières syndrome (4 ge	nes). Autosomal recessive: RNASEH	2A, RNASEH2B, RNASEH2C, SAMHD1.	
Alpha-mannosidosis (1 gene). Auto	osomal recessive: MAN2B1.		
Alpha-thalassemia (2 genes). Auto	somal recessive: HBA1, HBA2.		
Alport syndrome (1 gene). Autosor	nal recessive: COL4A3. Only recessiv	vely inherited variants will be reported for CC	DL4A3;
Alström syndrome (1 gene). Autos	omal recessive: ALMS1.		
Andermann syndrome (1 gene). A	utosomal recessive: SLC12A6.		
Arginase deficiency (1 gene). Auto	somal recessive: ARG1.		
Argininosuccinic aciduria (1 gene	. Autosomal recessive: ASL.		
Aromatic I-amino acid decarboxyl	ase deficiency (1 gene). Autosomal	recessive: DDC.	
Arterial tortuosity syndrome (1 ge	ne). Autosomal recessive: SLC2A10.		
Arthrogryposis, mental retardatio	n, and seizures (AMRS) (1 gene). Au	itosomal recessive: SLC35A3.	
Asparagine synthetase deficiency	(1 gene). Autosomal recessive: ASN	S.	
Aspartylglucosaminuria (1 gene).	Autosomal recessive: AGA.		
Ataxia with vitamin E deficiency (I gene). Autosomal recessive: TTPA.		
Ataxia-telangiectasia (1 gene). Aut	osomal recessive: ATM.		
Autoimmune polyglandular syndr	ome type 1 (1 gene). Autosomal rece	essive: AIRE.	
Autosomal recessive congenital in SDR9C7, SLC27A4, TGM1.	chthyosis (ARCI) (12 genes). Autoso	mal recessive: ABCA12, ALOX12B, ALOXE	3, CASP14, CERS3, CYP4F22, LIPN, NIPAL4, PNPL4
Autosomal recessive spastic atax	ia of Charlevoix-Saguenay (ARSAC	S) (1 gene). Autosomal recessive: SACS.	
Axonal neuropathy with neuromy	otonia, autosomal recessive (1 gene	e). Autosomal recessive: HINT1.	
Bardet-Biedl syndrome (12 genes)	. Autosomal recessive: ARL6, BBS1,	BBS10, BBS12, BBS2, BBS4, BBS5, BBS7,	, BBS9, MKKS, SDCCAG8, TTC8.
Bare lymphocyte syndrome type I	I (4 genes). Autosomal recessive: CII	TA, RFX5, RFXANK, RFXAP.	
Bartter syndrome (3 genes). Autos	omal recessive: BSND, KCNJ1, SLC	12A1.	
Beta-hemoglobinopathies, include	es sickle cell disease and beta-thal	assemias (1 gene). Autosomal recessive: Hi	BB.
Beta-ketothiolase deficiency (1 ge	ne). Autosomal recessive: ACAT1.		
Beta-mannosidosis (1 gene). Autos	somal recessive: MANBA.		
Biotinidase deficiency (1 gene). Au	utosomal recessive: BTD.		
Bloom syndrome (1 gene). Autoso	mal recessive: <i>BLM</i> .		
Brittle cornea syndrome (2 genes)	. Autosomal recessive: PRDM5, ZNF4	469.	
Canavan disease (1 gene). Autosor	nal recessive: ASPA.		
Carbamoyl phosphate synthetase	I deficiency (1 gene). Autosomal rec	essive: CPS1.	
Carnitine palmitoyltransferase I de	eficiency (1 gene). Autosomal recess	ive: CPT1A.	
Carnitine palmitoyltransferase II d	eficiency (1 gene). Autosomal reces	sive: CPT2.	
Carnitine-acylcarnitine translocas	e deficiency (1 gene). Autosomal rec	cessive: SLC25A20.	
Carpenter syndrome (2 genes). Au	tosomal recessive: MEGF8, RAB23.		
Cartilage-hair hypoplasia (1 gene)			
	sociated (1 gene). Autosomal recessi	ve: VLDLR.	
	romes (2 genes). Autosomal recessiv		
	(1 gene). Autosomal recessive: CYP2		
	3 genes). Autosomal recessive: CYBA		
Ciliopathies (2 genes). Autosomal r	o ,	-	

Reported by: Lei Wang, PhD

Page 4 of 8

E Integrated			
GENETICS			Inheritest® 500 PL
LabCorp Specialty Testing Group			Specimen ID:
Patient: CB, 569			Container ID:
DOB:	Patient ID:	Control ID:	Date Collected: 02/28/2023
Citrullinemia (2 genes). Autosomal	recessive: ASS1, SLC25A13.		
Coats plus syndrome and dyskera	atosis congenita, CTC1-related (1 ge	ene). Autosomal recessive: CTC1.	
Cockayne syndrome (2 genes). Au	tosomal recessive: ERCC6, ERCC8.		
Cohen syndrome (1 gene). Autoso	mal recessive: VPS13B.		
Cold-induced sweating syndrome	, includes Crisponi syndrome (2 ger	nes). Autosomal recessive: CLCF1, CRLF1.	
Combined malonic and methylma	lonic aciduria (1 gene). Autosomal re	cessive: ACSF3.	
Congenital adrenal hyperplasia (6	genes). Autosomal recessive: CYP11	B1, CYP17A1, CYP21A2, HSD3B2, POR, ST	TAR. Fusion CYP11B1 genes will not be reported;
Congenital amegakaryocytic thro	mbocytopenia (1 gene). Autosomal re	ecessive: MPL.	
Congenital disorder of deglycosy	ation (1 gene). Autosomal recessive:	NGLY1.	
Congenital disorders of glycosyla	tion type 1 (4 genes). Autosomal rece	essive: ALG1, ALG6, MPI, PMM2.	
congenital generalized lipodystro	phy (2 genes). Autosomal recessive:	AGPAT2, CAVIN1.	
Congenital insensitivity to pain w	th anhidrosis (1 gene). Autosomal re	cessive: NTRK1.	
Congenital myasthenic syndrome	(5 genes). Autosomal recessive: CHA	NT, COLQ, DOK7, GFPT1, RAPSN.	
Corneal dystrophy and perceptive	deafness (1 gene). Autosomal reces	sive: SLC4A11.	
Costeff optic atrophy syndrome, a	utosomal recessive (1 gene). Autos	omal recessive: OPA3.	
	essive: ATP6V0A2, ATP6V1E1, EFE		
Cystic fibrosis (1 gene). Autosoma		, , -	
Cystinosis (1 gene). Autosomal rec			
	1 gene). Autosomal recessive: HSD1	784	
			Only recessively inherited variants will be reported for
GJB2 and GJB6;	naronne (o genes). Autosoma reces		
Dihydrolipoamide dehydrogenase	deficiency (1 gene). Autosomal rece	ssive: DLD.	
)ihydropyrimidine dehydrogenas	e deficiency (1 gene). Autosomal rece	essive: DPYD.	
Distal spinal muscular atrophy, au	itosomal recessive (1 gene). Autoso	mal recessive: PLEKHG5.	
Donnai-Barrow syndrome (1 gene	. Autosomal recessive: LRP2.		
Early infantile epileptic encephalo	pathy (2 genes). Autosomal recessive	e: CAD, ITPA.	
Ehlers-Danlos syndrome type VII	(1 gene). Autosomal recessive: ADA	MTS2.	
Ethylmalonic encephalopathy (1 g	ene). Autosomal recessive: ETHE1.		
Familial dysautonomia (1 gene). A	utosomal recessive: ELP1.		
Familial hemophagocytic lymphol	nistiocytosis (4 genes). Autosomal re	cessive: PRF1, STX11, STXBP2, UNC13D.	
Familial hyperinsulinism (1 gene).	Autosomal recessive: ABCC8.		
Familial Mediterranean fever (1 ge	ne). Autosomal recessive: MEFV.		
Fanconi anemia (9 genes). Autosor	nal recessive: BRIP1, FANCA, FANC	C, FANCD2, FANCE, FANCF, FANCG, FANC	CI, FANCL.
Fraser syndrome (3 genes). Autoso	omal recessive: FRAS1, FREM2, GRI	P1.	
Fucosidosis (1 gene). Autosomal re			
Galactosemia (3 genes). Autosoma			
Galactosialidosis (1 gene). Autoso			
Gaucher disease (1 gene). Autosor			
Glutaric acidemia type I (1 gene).			
	. Autosomal recessive: CODM.	ETFDH.	
	(1 gene). Autosomal recessive: GSS		
	. Autosomal recessive: AMT, GLDC.	-	
	2 genes). Autosomal recessive: G6PC	SI C37A4	
		, 5200777.	
	(1 gene). Autosomal recessive: AGL.	1	
	(1 gene). Autosomal recessive: GBE		
	(2 genes). Autosomal recessive: PHK		
Jycogen storage disease type V	(1 gene). Autosomal recessive: PYGM	1.	

Reported by: Lei Wang, PhD

Integrated			Inheritest® 500 PLU
GENETICS			
LabCorp Specialty Testing Group			Specimen ID:
atient: CB, 569			Container ID:
OB:	Patient ID:	Control ID:	Date Collected: 02/28/2023
lycogen storage disease type V	II (1 gene). Autosomal recessive: PFKI	М.	
M1 gangliosidosis and mucopo	lysaccharidosis type IVB (1 gene). A	utosomal recessive: GLB1.	
RACILE syndrome (1 gene). Auto			
	ina (1 gene). Autosomal recessive: O	4 <i>T</i> .	
epatic venoocclusive disease w	ith immunodeficiency (1 gene). Auto	somal recessive: SP110.	
ereditary folate malabsorption (1 gene). Autosomal recessive: SLC46/	41.	
	gene). Autosomal recessive: ALDOB.		
ereditary spastic paraplegia (4 g	enes). Autosomal recessive: CYP7B1	, SPG11, SPG21, TECPR2.	
ermansky-Pudlak syndrome (10	genes). Autosomal recessive: AP3B1,	, AP3D1, BLOC1S3, BLOC1S6, DTNBP1, H	PS1, HPS3, HPS4, HPS5, HPS6.
MG-CoA lyase deficiency (1 gen	e). Autosomal recessive: HMGCL.		
olocarboxylase synthetase defi	ciency (1 gene). Autosomal recessive:	HLCS.	
omocystinuria (1 gene). Autoson	nal recessive: CBS.		
valine fibromatosis syndrome (*	I gene). Autosomal recessive: ANTXR	2.	
vdrolethalus syndrome (1 gene)	Autosomal recessive: HYLS1.		
pomyelination and congenital	cataract (1 gene). Autosomal recessiv	e: FAM126A.	
ypophosphatasia (1 gene). Autos	somal recessive: ALPL.		
munodeficiency-centromeric ir	stability-facial anomalies (ICF) sync	frome (4 genes). Autosomal recessive: CDC	A7, DNMT3B, HELLS, ZBTB24.
clusion body myopathy 2 (1 ger	ne). Autosomal recessive: GNE.		
ovaleric acidemia (1 gene). Auto	somal recessive: IVD.		
		ndrome (19 genes). Autosomal recessive: A TMEM216, TMEM231, TMEM237, TMEM67	HI1, ARL13B, B9D1, B9D2, CEP104, CPLANE1, INPP5.
unctional epidermolysis bullosa	(3 genes). Autosomal recessive: LAM	A3, LAMB3, LAMC2.	
venile hereditary hemochroma	tosis (2 genes). Autosomal recessive:	HAMP, HJV.	
rabbe disease (1 gene). Autosom	al recessive: GALC.		
eber congenital amaurosis (9 ge	nes). Autosomal recessive: AIPL1, LC	A5, LRAT, RD3, RDH12, RPE65, RPGRIP1,	SPATA7, TULP1.
eigh syndrome, autosomal rece IDUFV1, SURF1.	ssive (11 genes). Autosomal recessive	e: COX15, FBXL4, FOXRED1, LRPPRC, ND	UFAF2, NDUFAF5, NDUFS4, NDUFS6, NDUFS7,
eukoencephalopathy with vanis	hing white matter (5 genes). Autosom	nal recessive: <i>EIF2B1, EIF2B2, EIF2B3, EIF</i> 2	2B4, EIF2B5.
imb-girdle muscular dystrophy, RAPPC11, TRIM32.	autosomal recessive (12 genes). Aut	osomal recessive: CAPN3, DYSF, FKRP, PC	DMGNT1, POMT1, POMT2, SGCA, SGCB, SGCD, SGC
ipoprotein lipase deficiency, fan	nilial (1 gene). Autosomal recessive: L	PL.	
ong-chain 3-hydroxyacyl-CoA d	ehydrogenase (LCHAD) deficiency (1 gene). Autosomal recessive: HADHA.	
ysinuric protein intolerance (1 g	ene). Autosomal recessive: SLC7A7.		
sosomal acid lipase deficiency	(1 gene). Autosomal recessive: LIPA.		
aple syrup urine disease (3 gen	es). Autosomal recessive: BCKDHA, B	CKDHB, DBT.	
	genase (MCAD) deficiency (1 gene).		
egalencephalic leukoencephalo	pathy with subcortical cysts type 1	(1 gene). Autosomal recessive: MLC1.	
etachromatic leukodystrophy (2	genes). Autosomal recessive: ARSA,	PSAP.	
ethylmalonic acidemia (4 genes). Autosomal recessive: MCEE, MMAA	, MMAB, MMUT.	
ethylmalonic acidemia with hon	nocystinuria (4 genes). Autosomal rec	cessive: ABCD4, LMBRD1, MMACHC, MMAL	DHC.
-	cy (1 gene). Autosomal recessive: ACA		
	cy (1 gene). Autosomal recessive: TM		
	drome, MVP17-related (1 gene). Auto		
	drome, TK2-related (1 gene). Autosor		
	cidosis, and sideroblastic anemia (1	gene). Autosomal recessive: PUS1.	
	ne). Autosomal recessive: GNPTAB.		
ucolipidosis type IV (1 gene). Au	tosomal recessive: MCOLN1.		
,			

Reported by: Lei Wang, PhD

Date Issued: 03/27/2023

Page 6 of 8

			Inheritest® 500 P
LabCorp Specialty Testing Group			Specimen ID:
Patient: CB, 569			Container ID:
DOB:	Patient ID:	Control ID:	Date Collected: 02/28/2023
ucopolysaccharidosis type III (4 genes). Autosomal recessive: GNS, H	GSNAT, NAGLU, SGSH.	
ucopolysaccharidosis type IV/	(1 gene). Autosomal recessive: GALNS	5.	
ucopolysaccharidosis type IX	1 gene). Autosomal recessive: HYAL1.		
ucopolysaccharidosis type VI	1 gene). Autosomal recessive: ARSB.		
ucopolysaccharidosis type VII	(1 gene). Autosomal recessive: GUSB.		
ultiple pterygium syndrome (1	gene). Autosomal recessive: CHRNG.		
ultiple sulphatase deficiency (gene). Autosomal recessive: SUMF1.		
uscular dystrophy, LAMA2-rel	nted (1 gene). Autosomal recessive: LAN	ЛА2.	
emaline myopathy (1 gene). Au			
	utosomal recessive: NPHS1, NPHS2.		
		utosomal recessive: ATP13A2, C19orf12, C	COASY, CP, DCAF17, FA2H. PLA2G6.
-		CLN5, CLN6, CLN8, CTSD, CTSF, KCTD7,	
•	genes). Autosomal recessive: NPC1, NF		, 020, ,
	nd B (1 gene). Autosomal recessive: SN		
	gene). Autosomal recessive: <i>NBN</i> .		
	osomal recessive: DCLRE1C, RAG1, RA		
-	(1 gene). Autosomal recessive: SLC25/		
			PLOD2, PPIB, SERPINF1, TMEM38B, WNT1.
-	sive (3 genes). Autosomal recessive: OS		
	neurodegeneration (1 gene). Autosom	al recessive: PANK2.	
Pendred syndrome (1 gene). Auto			
eroxisomal acyl-CoA oxidase d	eficiency (1 gene). Autosomal recessive	e: ACOX1.	
henylalanine hydroxylase defic	iency, includes phenylketonuria (PKU	J) (1 gene). Autosomal recessive: PAH.	
hosphoglycerate dehydrogena	se deficiency (1 gene). Autosomal reces	ssive: PHGDH.	
itt-Hopkins-like syndrome 1 (1	gene). Autosomal recessive: CNTNAP2.		
olycystic kidney disease, autos	comal recessive (1 gene). Autosomal re	cessive: PKHD1.	
Compe disease (1 gene). Autosor	nal recessive: GAA.		
ontocerebellar hypoplasia (11 g	genes). Autosomal recessive: AMPD2, C	CHMP1A, CLP1, EXOSC3, RARS2, SEPSE	CS, TSEN2, TSEN34, TSEN54, VPS53, VRK1.
rimary carnitine deficiency (1 g	ene). Autosomal recessive: SLC22A5.		
rimary congenital glaucoma (1	gene). Autosomal recessive: CYP1B1.		
rimary hyperoxaluria (3 genes).	Autosomal recessive: AGXT, GRHPR, I	HOGA1.	
rogressive familial intrahepatic	cholestasis (3 genes). Autosomal rece	ssive: ABCB11, ABCB4, ATP8B1.	
rogressive pseudorheumatoid	dysplasia (1 gene). Autosomal recessiv	e: <i>CCN6</i> .	
ropionic acidemia (2 genes). Au	tosomal recessive: PCCA, PCCB.		
seudocholinesterase deficienc	y (1 gene). Autosomal recessive: BCHE.		
ycnodysostosis (1 gene). Autos	omal recessive: CTSK.		
vridoxal 5'-phosphate-depende	nt epilepsy (1 gene). Autosomal recess	ive: PNPO.	
	1 gene). Autosomal recessive: ALDH7A		
	ncy (4 genes). Autosomal recessive: DL		
	ness (2 genes). Autosomal recessive: A		
		0HDDS, EYS, FAM161A, IFT140, MAK, PR	CD. RLBP1.
	Inctata (3 genes). Autosomal recessive:		,
andhoff disease (1 gene). Autos			
	ene). Autosomal recessive: SELENON.		
	,		CD8A, CORO1A, DOCK8, FOXN1, IKBKB, IL2RA, IL

Severe combined immunodeficiency (SCID) (25 genes). Autosomal recessive: AK2, CD247, CD3D, CD3E, CD3G, CD8A, COR01A, DOCK8, FOXN1, IKBKB, IL2RA, IL7R, JAK3, LCK, LIG4, MALT1, MTHFD1, NHEJ1, PGM3, PNP, PRKDC, PTPRC, STK4, TTC7A, ZAP70.

Severe congenital neutropenia (1 gene). Autosomal recessive: HAX1.

Reported by: Lei Wang, PhD

Page 7 of 8

GENETICS			Inheritest® 500 PLU
LabCorp Specialty Testing Group			Specimen ID:
Patient: CB, 569			Container ID:
DOB:	Patient ID:	Control ID:	Date Collected: 02/28/2023
Sialic acid storage disorders (1	gene). Autosomal recessive: SLC17A5.		
Sialidosis (1 gene). Autosomal r	ecessive: NEU1.		
Sjogren-Larsson syndrome (1 g	gene). Autosomal recessive: ALDH3A2.		
Smith-Lemli-Opitz syndrome (1	gene). Autosomal recessive: DHCR7.		
Spinal muscular atrophy (1 gen	e). Autosomal recessive: SMN1.		
Spondylothoracic dysostosis (1 gene). Autosomal recessive: MESP2.		
Sulfate transporter-related oste epiphyseal dysplasia (1 gene).		rogenesis type 1B, atelosteogenesis type	2, diastrophic dysplasia, and recessive multiple
Sulfite oxidase deficiency (1 ge	ne). Autosomal recessive: SUOX.		
Tay-Sachs disease (1 gene). Au	tosomal recessive: HEXA.		
Tetrahydrobiopterin deficiency	(3 genes). Autosomal recessive: PCBD1	, PTS, QDPR.	
Trichohepatoenteric syndrome	(2 genes). Autosomal recessive: SKIV2L	, TTC37.	
Trifunctional protein deficiency	r (1 gene). Autosomal recessive: HADHB.		
Triple A syndrome (1 gene). Aut	osomal recessive: AAAS.		
Tyrosine hydroxylase deficiend	y (1 gene). Autosomal recessive: TH.		
Tyrosinemia type I (1 gene). Aut	osomal recessive: FAH.		
Tyrosinemia type II (1 gene). Au	tosomal recessive: TAT.		
Tyrosinemia type III (1 gene). A	utosomal recessive: HPD.		
Usher syndrome (hearing loss	and retinitis pigmentosa) (9 genes). Aut	tosomal recessive: ADGRV1, CDH23, CIB2,	CLRN1, PCDH15, USH1C, USH1G, USH2A, WHRN.
Very long-chain acyl-CoA dehy	drogenase (VLCAD) deficiency (1 gene). Autosomal recessive: ACADVL.	
Walker-Warburg syndrome and	other FKTN related dystrophies (1 ger	ne). Autosomal recessive: FKTN.	
Werner syndrome (1 gene). Aut	osomal recessive: WRN.		
Wilson disease (1 gene). Autoso	mal recessive: ATP7B.		
Xeroderma pigmentosum (8 ge	nes). Autosomal recessive: DDB2, ERCC	2, ERCC3, ERCC4, ERCC5, POLH, XPA, XI	PC.
Zellweger spectrum disorder/ p	eroxisome biogenesis disorder (13 ger	nes). Autosomal recessive: PEX1, PEX10, Pl	EX11B, PEX12, PEX13, PEX14, PEX16, PEX19, PEX2,

Zellweger spectrum disorder/ peroxisome biogenesis disorder (13 genes). Autosomal recessive: PEX1, PEX10, PEX11B, PEX12, PEX13, PEX14, PEX16, PEX19, PEX2, PEX26, PEX3, PEX5, PEX6.

Performing Labs

Component Type	Performed at	Laboratory Director
Technical Component	Medical Neurogenetics, LLC, 5424 Glenridge Drive, Atlanta, GA 30342	Geraldine A. McDowell, PhD FACMG
Professional Component	Medical Neurogenetics, LLC, 5424 Glenridge Drive, Atlanta, GA 30342	Geraldine A. McDowell, PhD FACMG

For inquires, the physician may contact the lab at 800-848-4436

This test was developed and its performance characteristics determined by Medical Neurogenetics, LLC. It has not been cleared or approved by the Food and Drug Administration.

Medical Neurogenetics, LLC is a wholly-owned subsidiary of Laboratory Corporation of America Holdings.